期刊文献+

基于共同决策方向矢量的多源迁移及其快速学习方法 被引量:4

Common-Decision-Vector Based Multiple Source Transfer Learning Classification and Its Fast Learning Method
下载PDF
导出
摘要 多源迁移学习提取了多个相似领域之间有用信息,提高了学习效率,但存在计算核矩阵的空间和时间复杂度较高的问题.提出了一种多源迁移学习方法,该方法基于结构风险最小框架理论,以共同决策方向矢量为基准,将多个相似领域的决策方向矢量嵌入到支持向量机的训练过程中,提高了目标领域分类器的分类性能.并结合核心向量机理论提出了共同决策方向矢量核心向量机,实现对大样本数据集的快速分类学习.模拟和真实数据集实验表明了所提算法的有效性. Multiple source transfer learning( MSTL) has been obtaining more and more applications especially from several related source domains to help the learning task on target domain. However,multiple source transfer learning algorithms often deal with the corresponding quadratic programming problems which may suffer a big computational burden caused by the kernel matrix computation. In this paper,a novel common-decision-vector based multiple source transfer classification learning( CDV-MSTL) is proposed which doesn't depend on the intrinsic structure of data. This algorithm is based on the structural risk minimization principle and the SVMlike framework,so it has good adaptability and better accuracy.Based on the theory of CVM,CDV-MSTL is extended to its CVMbased version which can realize fast training for large scale data. Extensive experiments on synthetic and real-world datasets demonstrate the significant improvement in classification performance obtained by the proposed algorithm over existing MSTL algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第7期1349-1355,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61202311 No.61272210) 江南大学博士科研基金(No.JUDCF13031) 江苏省普通高校研究生科研创新计划基金(No.CXLX13-748)
关键词 共同决策矢量 多源迁移学习 分类 核心集向量机 common decision vector multiple source transfer learning classification core vector machine
  • 相关文献

参考文献23

  • 1Pan S J L,Kwok J T,Yang Q.Transfer learning via dimensionality reduction[A].Proceedings of the 23rd International Conference on Artificial Intelligence [C].California,USA,2008.677-682.
  • 2Pan S J L,Ni X.Cross-domain sentiment classification via spectral feature alignment [A].Proceedings of the 19th International Conference on World Wide Web[C].New York:ACM,2010.751-760.
  • 3Zhuang F Z,Luo P,Xiong H,Xiong Y H.Cross-domain learning from multiple sources:a concensus regularization perspective[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(12):1664-1678.
  • 4Sun S.Multi-view Laplacian support vector machines[A].Lecture Notes in Computer Science[C].Germany:Springer,2011.209-222.
  • 5Xu Z,Sun S.Multi-view transfer learning with Adaboost[A].Proceedings of the 23rd International Conference Tools with Artificial Intelligence[C].New York,2011.399-402.
  • 6Ling X,Dai W,Xue G R,et al.Spectral domain-transfer learning[A].Proceedings of the 14th International Conference on Knowledge Discovery and Data Mining[C].USA:ACM,2008.488-496.
  • 7Gao J,Fan W,Sun Y,et al.Heterogeneous source consensus learning via decision propagation and negotiation[A].Proceedings of the 15rd International Conference on Knowledge Discovery and Data Mining[C].USA:ACM,2009.339-348.
  • 8蒋亦樟,邓赵红,王士同.ML型迁移学习模糊系统[J].自动化学报,2012,38(9):1393-1409. 被引量:34
  • 9胡文军,王士同,邓赵红.适合大样本快速训练的最大夹角间隔核心集向量机[J].电子学报,2011,39(5):1178-1184. 被引量:8
  • 10Deng Z H,Fu-Lai Chung,Wang S T.FRSDE:fast reduced set density estimator using minimal enclosing ball approximation[J].Pattern Recognition,2008,(41):1363-1372.

二级参考文献59

  • 1Cortes C, Vapnik V. Support vector networks [J]. Machine Learning, 1995,20(3 ) : 273 - 297.
  • 2Scholkopf B, Smola A, Williamson RC, Bartlett PL. New support vector algorithms[ J ]. Neural Computation, 2000, 12:1207 - 1245.
  • 3Hu M, Chen Y, Kwok J T. Building sparse malti-kemel SVM classifiers[J].IEEE Trans on Neural Networks, 2009,20(5) : 827 - 839.
  • 4Chung FL,Wang S T,Deng Z.H. ,et al. Fuzzy kernel hyperball perceptron[J]. ASC, 2004,5 : 67 - 74.
  • 5Shivaswamy P, Jebara T. Ellipsoidal kemel machines[J].Artificial Intelligence and Statistics, AISTATS, 2007.
  • 6David M J Tax, et al. Support vector data description [ J ]. Machine Learning,2004,54(1):45 - 66.
  • 7Wu M. R, Ye J P. A small sphere and large margin approach for novelty detection using training data with outliers[J]. PAMI,2009,31 : 1 - 5.
  • 8Collobert R, Bengio S., Bengio Y. A parallel mixture of SVMs for very large scale problems[ J]. Neural Computation,2002,14 (5) : 1105 - 1114.
  • 9Tsang I W, Kwok J T, et al. Core vector machines: Fast SVM training on very large data sets [ J ]. Journal of Machine Learning Research, 2005,6: 363 - 392.
  • 10Williams C, Seeger M. Using the Nystron method to speed up kernel machines[ A]. Advances in Neural Information Processing Systems[C]. Cambridge,MA:MIT Press,2001.13:682 - 688.

共引文献43

同被引文献9

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部