摘要
生物发光断层成像是一种新型光学分子影像技术。基于稀疏正则化的迭代算法在解决重建中病态问题起着关键的作用。将4种典型的基于l1正则化的迭代算法(内点法、同伦算法、一阶方法和拉格朗日算法)应用于重建过程中,分别进行数学推导,并从重建精度和重建速度方面进行了实验对比和性能评估。实验结果表明尽管4种方法均能较好地重建出光源位置,但时间代价和重建能量大小上存在差异,据此结果为不同情况下重建算法的选取提出建议。
Bioluminescence tomography (BLT) has recently emerged as a promising preclinical imaging modality. Iterative methods based on sparse regularization play a critical role in solving the ill-posed BLT inverse problem. Four kinds of typical iterative methods based on ll regularization were briefly introduced and applied to reconstruct the bioluminescent source location and intensity, which include interior-point methods, homotopy methods, firstorder methods, and augmented Lagrangian methods. Numerical experiments on a digital inhomogeneous mouse model and in vivo experiments were conducted to evaluate the performance of these methods in terms of localization accuracy, reconstructed intensity and power.
出处
《激光与光电子学进展》
CSCD
北大核心
2015年第8期254-262,共9页
Laser & Optoelectronics Progress
基金
国家自然科学基金(61372046)
关键词
医用光学
生物发光断层成像
光源重建
迭代算法
L1正则化
medical optics
bioluminescence tomography
source reconstruction
iterative algorithm
11 regularization