期刊文献+

LPSO相增强铸态Mg_(92)Zn_4Y_4和Mg_(92)Zn_4Y_3Gd_1合金组织与性能分析(英文) 被引量:4

Microstructures and Properties of As-Cast Mg_(92)Zn_4Y_4 and Mg_(92)Zn_4Y_3Gd_1 Alloys with LPSO Phase
原文传递
导出
摘要 采用普通凝固技术制备了含有长周期堆垛有序(long period stacking ordered,LPSO)结构相的Mg92Zn4Y4和Mg92Zn4Y3Gd1合金。通过OM、SEM、EDS、XRD和TEM分析了合金中各相形貌、微区成分及结构。结果表明:Zn/RE原子比为1的2种铸态镁合金中均存在14H-LPSO结构相;在Mg-Zn-Y合金中添加稀土元素Gd增加了合金的形核质点并促进了长周期堆垛有序结构相的形成,14H-LPSO相体积分数由12.1%增至30.4%;LPSO结构相在高温形成时分割了αMg树枝晶,基体平均晶粒尺寸由50μm降至10μm以下;铸态Mg92Zn4Y4合金的凝固组织为α-Mg固溶体+Mg12Zn Y+Mg3Zn3Y2+Mg-Y;铸态Mg92Zn4Y3Gd1合金的凝固组织主要为α-Mg固溶体+Mg12Zn(Y,Gd)+Mg3Zn3(Y,Gd)2;室温条件下,Mg92Zn4Y4和Mg92Zn4Y3Gd1合金的压缩率达到12.4%和15.5%,热导率分别为99.233和88.639W·(m·K)-1。 Mg92Zn4Y4 and Mg92Zn4Y3Gd1 alloys with long period stacking ordered(LPSO) structure phases were prepared by conventional solidification process.By OM, SEM, EDS, XRD and TEM analysis the phases and 14H-LPSO structures of the two alloys were characterized.The results show that as-cast Mg-alloy with the atomic ratio of Zn/RE = 1 will lead to LPSO phase; adding of Gd element to Mg92Zn4Y4 alloy can facilitate the formation of LPSO phase, and its volume fraction increases from 12.1% to 30.4%; Mg dendrites are split and refined during the precipitation of LPSO phase formed at high temperature, resulting in that the average grain size of α-Mg decreases from 50 μm to 10 μm; the solidification microstructure of as-cast Mg92Zn4Y4 alloy is α-Mg solid solution + Mg12 Zn Y + Mg3Zn3Y2 + Mg-Y; In Mg92Zn4Y3Gd1 alloy, the as-cast microstructure is confirmed to be composed mainly of α-Mg solid solution, Mg12Zn(Y, Gd) and Mg3Zn3(Y, Gd)2; at room temperature, the compression ratio and the thermal conductivity of Mg92Zn4Y4 and Mg92Zn4Y3Gd1 alloys are 12.4% and 15.5%, and 99.233 W·(m·K)^-1 and 88.639 W·(m·K)^-1, respectively.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第7期1617-1622,共6页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(51374084/E041607)
关键词 铸态Mg-Zn-Y(-Gd)合金 长周期堆垛有序结构 稀土 热导率 压缩塑性 as-cast Mg-Zn-Y(-Gd) alloy long period stacking ordered structure rare earth thermal conductivity compression plasticity
  • 相关文献

参考文献15

  • 1Carpenter J, Jackman J, Li Net al. Materials Science Forum[J], 2007, 24(11): 546.
  • 2Li N, Zheng Y F. Journal of Materials Science & Technology[J], 2013, 29(6): 489.
  • 3Liu Huan, Xue Feng, Bai Jing et al. Rare Metal Materials and Engineering[J], 2014, 43(3): 570 (in Chinese).
  • 4Lee J Y, Kim D H, Lira H K et al. Material Letters[J], 2005, 59: 3801.
  • 5Yi S, Park E, Ok Jet al. Materials Science and Engineering A[J], 2001,300(1-2):312.
  • 6Luo Z P, Zhang S Q. Journal of Materials Science Letters[J], 2000, 19:813.
  • 7Kawamura Y, Hayashi K, Inoue A et al. Materials Transactions[J], 2001, 42(7): 1172.
  • 8Itoi T, Seimiya T, Kawamura Yet al. Seripta Materialia[J], 2004, 51(2): 107.
  • 9Okuda H, Horiuchi T, Yamasaki M et al. Scripta Materialia[J], 2014, 75:66.
  • 10Srinivasan A, Huang Y, Mendis C Let al. Materials Science and EngineeringA[J], 2014, 595:224.

同被引文献25

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部