期刊文献+

应用酵母双杂交系统筛选与流感病毒NS2蛋白相互作用的宿主蛋白 被引量:2

Identification of host interacting proteins of influenza virus NS2 by yeast two-hybrid system
下载PDF
导出
摘要 流感病毒的NS2蛋白能够介导病毒核糖核蛋白复合体(v RNP)的核输出过程,而且可以调控病毒聚合酶的活性,参与禽流感病毒在哺乳动物宿主体内的适应过程。为鉴定与NS2相互作用的宿主蛋白,本研究利用流感病毒NS2蛋白作为"诱饵"蛋白,通过经典酵母双杂交系统筛选与其相互作用的宿主蛋白,并利用免疫共沉淀(Co-IP)和GST pull-down方法进一步验证其相互作用关系。结果表明,通过酵母双杂交系统筛选含有Calu-3、A549、THP-1和U251 4种细胞的c DNA文库,共筛选到7种蛋白,分别为HGS、EXOSC4、ZWINT、PRDX3、IRF3、NDUFB9和RMND5B,根据Gene Ontology分析结果表明,这些蛋白分别参与细胞生长发育、细胞代谢和细胞定位等过程。其中对过氧化物氧还酶3(PRDX3)进行了Co-IP和GST pull-down试验证实重组表达的NS2蛋白和PRDX3蛋白在293T细胞中存在特异性的相互作用。本研究为进一步研究两者之间相互作用如何影响NS2蛋白功能以及病毒的复制周期奠定了基础。 The NS2 protein of influenza virus mediate the nuclear export process of viral ribonucleoprotein complexes (vRNP) and also regulates the viral polymerase activity during virus replication and facilitates the adaptive processes of avian influenza viruses in the mammalian hosts. In the present study, using influenza virus NS2 as a "bait" protein, we performed the yeast two-hybrid (Y2H) screening to identify host proteins that interacted with NS2 and further valiated the interactions by Co-Immun- oprecipitation (Co-IP) and GST pull-down. As a result, we successfully identified 7 host proteins that were able to interact with the NS2 protein by screening the Y2H cDNA library constructed from Calu-3, A549, THP-1 and U251 cells. The Gene-Ontology (GO) analysis showed that these proteins were involved in cell growth and development, metabolic processes, and cellular localization, respectively. The GST pull-down and Co-IP assay demonstrated that NS2 and peroxiredoxin 3 (PRDX3) specifically interacted in the 293T cells. Our data thus provides a basis to further study the interaction between these two proteins affects the NS2 function and the virus replication cycle.
出处 《中国预防兽医学报》 CAS CSCD 北大核心 2015年第8期576-580,共5页 Chinese Journal of Preventive Veterinary Medicine
基金 国家自然科学基金(31472215)
关键词 禽流感病毒 NS2蛋白 酵母双杂交 免疫共沉淀 宿主蛋白 avian influenza virus NS2 protein yeast two-hybrid Co-lmmunoprecipitation host protein
  • 相关文献

参考文献10

  • 1Paterson D, Fodor E. Emerging roles for the influenza A virus nuclear export protein(NEP) [J]. PLoS Pathog, 2012, 8(12), e1003019.
  • 2Manz B, Brunotte L, Reuther P, et al. Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells [J]. Nat Commun, 2012, 3: 802.
  • 3Gao Shi-juan, Wu Jiao-xianng, Liu Ran-yi, et al. Interaction of NS2 with AIMP2 facilitates the switch from ubiquitination to SUMOylation of M1 in influenza A virus-infected cells [J]. J Virol, 2015, 89(1): 300-311.
  • 4Gorai T, Goto H, Noda T, et al. F1Fo-ATPase, F-type proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding [J]. PNAS USA, 2012, 109(12): 4615-4620.
  • 5廖亚金,李素,贺番,何文瑞,董泓,冯烁,孙元,仇华吉.猪外周血单个核细胞cDNA酵母表达文库的构建及与猪瘟病毒E2蛋白相互作用细胞蛋白的筛选[J].中国预防兽医学报,2013,35(9):707-710. 被引量:10
  • 6Chae H Z, Kim H J, Kang S W, et al. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin [J]. Diabetes Res Clin Pract, 1999, 45(2-3): 101-112.
  • 7Chang T S, Cho C S, Park S, et al. Peroxiredoxin Ⅲ, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria [J]. J Biol Chem, 2004, 279(40): 41975-41984.
  • 8Nonn L, Berggren M, Powis G. Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis [J]. Mol Cancer Res, 2003,1(9): 682- 689.
  • 9Chua P J, Lee E H, Yu Y, et al. Silencing the Peroxiredoxin Ⅲ gene inhibits cell proliferation in breast cancer [J]. Int J Oncol, 2010, 36(2): 359-364.
  • 10Akarsu H, Burmeister W P, Petosa C, et al. Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein(NEP/NS2) [J]. EMBO J, 2003, 22(18): 4646- 4655.

二级参考文献15

  • 1李国新,李娜,仇华吉,朱庆虎,李艳,王明杰,李继昌,童光志.猪瘟病毒石门株基因组全长cDNA的克隆与序列分析[J].中国预防兽医学报,2006,28(3):275-278. 被引量:11
  • 2Lee Wei-cheng, Wang Chin-shun, Chien Maw-sheng. Virus anti?gen expression and alterations in peripheral blood mononuclear cell subpopulations after classical swine fever virus infection[J]. Vet Microbiol, 1999,67: 17-29.
  • 3Susa M, Konig M, Saalmuller A, et al. Pathogenesis of classical swine fever: B-Iymphocyte deficiency caused by hog cholera virus[J]. J Virol, 1992,66: 1171-1175.
  • 4Summerfield A, Knotig S M, McCullough K C. Lymphocyte apoptosis during classical swine fever: implication of activation?induced cell death[J]. J Virol, 1998, 72: 1853-1861.
  • 5Ceppi M, de Bruin M G, Seuberlich T, et al. Identification of classical swine fever virus protein E2 as a target for cytotoxic T cells by using mRNA-transfected antigen-presenting cells[J]. J Gen Virol, 2005, 86: 2525-2534.
  • 6Risatti G R, Borca M V, Kutish G F, et al. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine[J]. J Virol, 2005, 79: 3787-3796.
  • 7Risatti G R, Holinka L G, Fernandez S I, et al. N-linked glyco?sylation status of classical swine fever virus strain Brescia E2 glycoprotein influences virulence in swine[J]. J Virol, 2007, 81: 924-933.
  • 8Tamura T, Sakoda Y, Yoshino F, et al. Selection of classical swine fever virus with enhanced pathogenicity reveals synergistic virulence determinants in E2 and NS4B[J]. J Virol, 2012, 86: 8602-8613.
  • 9Yu Hai-yuan, Braun P, Yildirim M A, et al. High-quality binary protein interaction map of the yeast interactome network[J]. Science, 2008, 322: 104-110.
  • 10Zhu Y Y, Machleder E M, Chenchik A, et al. Reverse transcrip?tase template switching: a SMART approach for full-length eD?NA library construction[J]. Biotechniques, 2001, 30: 892-897.

共引文献9

同被引文献14

  • 1Liu Ming, Lam K H, Zhang Qin-fen, et al. The functional study of the N-terminal region of influenza B virus nucleoprotein [J].PLoS One, 2015, 10(9): e0137802.
  • 2Baudin F, Bach C, Cusack S, et al. Structure of influenza virus RNP. I. influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent [J].EMBO J, 1994, 13(13): 3158-3165.
  • 3Nailwal H, Sharma S, Mayank A K, et al. The nucleoprotein of influenza A virus induces p53 signaling and apoptosis via attenuation of host ubiquitin ligase RNF43 [J].Cell Death Dis, 2015, 6: e1768.
  • 4Gülsah G, Herwig A, Klenk H D. Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus [J].PLoS Pathog, 2008, 4(2): e11.
  • 5Wang Pui, Song Wen-jun, Mok B W, et al. Nuclear factor 90 negatively regulates influenza virus replication by interacting with viral nucleoprotein [J].J Virol, 2009, 83(16): 7850-7861.
  • 6Momose F, Basler C F, O’Neill R E, et al. Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis [J].J Virol, 2001, 75(4): 1899-1908.
  • 7Bialas K M, Bussey K A, Stone R L, et al. Specific nucleoprotein residues affect influenza virus morphology [J].J Virol, 2014, 88(4): 2227-2234.
  • 8Digard P, Elton D, Bishop K, et al. Modulation of nuclear localization of the influenza virus nucleoprotein through interaction with actin filaments [J].J Virol, 1999, 73(3): 2222-2231.
  • 9Yamamoto T, Kobayashi-Ooka Y, Zhou Guo-lei, et al. Identification and characterization of Csh3 as an SH3 protein that interacts with fission yeast Cap1 [J].FEMS Yeast Res, 2015, 15(8):97-103.
  • 10Hua Min-hui, Yan Su-juan, Deng Yan, et al. CAP1 is overexpressed in human epithelial ovarian cancer and promotes cell proliferation [J].International J Mol Med, 2015, 35(4): 941-949.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部