期刊文献+

基于文本纹理特征的中文情感倾向性分类 被引量:4

Texture Based Sentiment Orientation Identification for Chinese Texts
下载PDF
导出
摘要 随着互联网的发展,社交网络、电子商务等已经成为人们关注的焦点,对社交网络的文本进行情感倾向性分析和挖掘变得越来越重要。该文针对网络上的中文文本,提出一种基于文本纹理特征的情感倾向性分类方法。通过测试多种文本纹理特征对文本情感倾向性的影响,成功将文本纹理特征融入情感分类中。通过计算各类特征与文本的情感倾向性的相关度,对特征进行降维。相对于基于词频的情感倾向性分类方法,查准率平均提高了10%左右。 With the development of Internet, the text orientation identification and text mining in social network is becoming a hot research issue. In this paper, a text sentiment orientation identification method using textures is pro posed. The feature reduction is conducted by mutual information between the texture features and the text orienta tions. Compared to sentiment orientation classification method based on word frequency, the proposed method is proved about 10% increase for precision on average.
出处 《中文信息学报》 CSCD 北大核心 2015年第3期106-112,120,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金(61272441 61171173)
关键词 中文文本分类 情感倾向性 文本纹理 SVM Chinese text categorization sentiment orientation textures of text SVM
  • 相关文献

参考文献14

  • 1Peter D Turney, Michael L Littman. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Sys- tems (TOIS). 2003, 21(4) :315-346.
  • 2Kim, S M, E Hovy. Automatic Detection of ()pinion Bearing words and Sentences[A]. Companion Volume to the Proceedings of IJCNLP-05[C]. Jeju Island, KR, 2005: 61-66.
  • 3Janyee wiebe, Theresa wilson, Matthew Bell. Identif- ying Collocations for Recognizing Opinions[A]. ACL 01 Workshop on Collocation= Computational Extrac tion, Analysis, and Exploitation [C]. Toulouse, France, 2001:24-31.
  • 4Theresa Wilson, Janyce Wiebe, Paul Hoffmann. Rec- ognizing Contextual Polarity: An Exploration of Fea tures for Phrase-Level Sentiment Analysis[J]. Compu- tational Linguistics, 2009,35 (3): 399-433.
  • 5Prem Melville, Wojciech Gryc, and Richard D. Law rence. Sentiment analysis of blogs by combining lexical knowledge with text classification[A[. KDD '09: Proceedings of the 15th ACM SIGKDD international con ference on Knowledge discovery and data mining[C]. New York, USA:ACM, 2009,1275-1284.
  • 6朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 7代六玲,黄河燕,陈肇雄.中文文本分类中特征抽取方法的比较研究[J].中文信息学报,2004,18(1):26-32. 被引量:228
  • 8徐军,丁宇新,王晓龙.使用机器学习方法进行新闻的情感自动分类[J].中文信息学报,2007,21(6):95-100. 被引量:107
  • 9徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 10Bo Pang, Lillian Lee, Shivakumar Vaithyanathan. Thumbs up? Sentiment Classification using Machine Learning Techniques[A]. EMNLP '02 Proceedings of the ACL-02 conference on Empirical methods in natu- ral language processing[C] Stroudsburg, PA, USA: Association for Computational Linguistics, 2002: 79- 86.

二级参考文献94

  • 1董振东.语义关系的表达和知识系统的建造[J].语言文字应用,1998(3):79-85. 被引量:59
  • 2金珠,林鸿飞,赵晶.基于HowNet的话题跟踪及倾向性分类研究[J].情报学报,2005,24(5):555-561. 被引量:21
  • 3朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 4苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:387
  • 5黄昌宁 等.对自动分词的反思[A]..语言计算与基于内容的文本处理[C].北京:清华大学出版社,2003,7.26-38.
  • 6Yang Y.An evaluation of statistical approaches to text categorization[J].Information Retrieval,1999,1:69-90.
  • 7Sebastiani,F.Machine learning in automated text categorization[J],ACM Computing Surveys,2002,34(1):1-47.
  • 8Yang Y,Pedersen J.A Comparative Study on Feature Selection in Text Categorization[C]//Proceedings of the 14th International conference on Machine Learning,1997:412-420.
  • 9Yan J,Liu N,Zhang B,et al.OCFSj optimal orthogonal centroid feature selection for text categorization[C]//Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval,2005:122-129.
  • 10Yang Y,Liu X.A re-examination of text categorization methods[C]//Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval,1999:42-49.

共引文献780

同被引文献48

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部