摘要
基于转化的广告方式在应用和研究中逐渐得到重视,采用该方式的搜索广告在广告排序时需要对候选广告的转化概率进行预测,以提高广告的转化率,优化搜索引擎的广告收益。该文在对搜索广告中影响转化的各特征进行提取与分析的基础上,提出了描述广告、查询、用户三个因素与转化事件关系的概率因子图模型,并基于该模型对广告转化进行预测。最后我们使用从某商业搜索引擎采集的实际数据对预测模型进行评价并与朴素贝叶斯方法进行对比,实验结果表明,三类因素对转化具有不同程度的影响,我们提出的因子图模型可以较好地预测广告的转化。
The CPA (Cost-per Action) Advertising is attracting more and more attention in both industry and re- search. Sponsored search based on CPA requires predicting conversion probability for each candidate ad during ad ranking, in order to raise conversion rate and optimize ad revenue for search engine. After extracting and analyzing features which may influence conversion of ads, we propose a probabilistic factor graph based model for ad conver- sion prediction which describes the relation between the conversion event and three factors, i.e. ad, query, and us er. The model is evaluated and compared with Naive Bayesian method on real-world data gathered from a commercial search engine. The experiment demonstrates a good result in the ad conversion prediction, as well as different influ- ences of the three factors.
出处
《中文信息学报》
CSCD
北大核心
2015年第3期140-149,共10页
Journal of Chinese Information Processing
关键词
搜索广告
概率预测模型
CPA广告
sponsored search
probabilistic prediction model
CPA advertising