期刊文献+

MnO_2纳米粒子固载纤维素酶用于高效水解农业废弃物制备生物乙醇(英文) 被引量:7

Immobilization of cellulase onto MnO_2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste
下载PDF
导出
摘要 纤维素酶是一种有效的纤维质类物质水解催化剂,工业应用时可通过固定化纤维素酶来降低其成本.本文将烟曲霉原变种JCF产生的纤维素酶固定在Mn O2纳米颗粒上.MnO2可提高纤维素酶的活性,并充当一个更好的载体.采用扫描电镜表征了所制MnO2纳米粒子及其负载纤维素酶的表面性质,以傅里叶变换红外光谱分析了固定在MnO2纳米粒子上纤维素酶的官能团性质.纤维素酶在MnO2纳米粒子上最大的固定化效率为75%.考察了固定化纤维素酶的活性、操作pH值、温度、热稳定性和重复使用性等性质.结果表明,所制固定化酶的稳定性比游离酶更高.固定于MnO2纳米粒子上的纤维素酶可用于纤维质类物质的水解反应,且能在较宽的温度和pH值范围内使用.表征结果证实了该催化剂具有非常高的催化纤维素类物质水解的活性. Cellulase is an efficient enzymatic catalyst that hydrolyses cellulosic substances. The high costs associated with using enzymes for industrial applications can be reduced by immobilizing the cellu-lase. In the current study, cellulase produced by Aspergillus fumigatus JCF was immobilized onto MnO2 nanoparticles, which improve the activity of cellulase and offer a superior support. The sur-face characteristics of synthesized MnO2 nanoparticles and cellulase-bound MnO2 nanoparticles were investigated by scanning electron microscopy, and Fourier transform infrared spectroscopy was used to analyze the functional characteristics of the immobilized cellulase. The maximum cellu-lase binding efficiency was 75%. The properties of the immobilized cellulase, including activity, operational pH, temperature, thermal stability, and reusability were investigated and were found to be more stable than for the free enzyme. It was found that cellulase immobilized on MnO2 nanopar-ticles could be used to hydrolyze cellulosic substances over a broad range of temperature and pH. The results confirmed that cellulase immobilized on MnO2 nanoparticles was very efficient in terms of cellulolytic activity.
出处 《催化学报》 SCIE EI CAS CSCD 北大核心 2015年第8期1223-1229,共7页
关键词 纤维素酶 固定化 二氧化锰 纳米生物催化剂 农业废弃物 水解 生物乙醇 Cellulase Immobilization Manganese dioxide Nanobiocatalyst Agricultural waste Hydrolysis Bioethanol
  • 相关文献

参考文献1

二级参考文献17

  • 1W.X. Zhang, Z.H. Yang, Y. Liu, S.P. Tang, X.Z. Han and M. Chen: J. Cryst. Growth, 2004, 263, 394.
  • 2Z.H. Wang, D.Y. Geng, D. Li and Z.D. Zhang: J. Mater. Res., 2007, 22, 2376.
  • 3M.T. Hepworth, J.J. Berns and K.A. Sadecki: Final Tech. Rep., 1997, DE-FG22-94PC94212 -11.
  • 4J. Kanamori: J. Appl. Phys., 1960, 31, 14S.
  • 5A.J. Rondinone, A.C.S. Samia and Z.J. Zhang: J. Phys. Chem. B, 1999, 103, 6876.
  • 6J. Garcfa-Otero, M. Porto, J. Rivas and A. Bunde: Phys. Rov. Lett., 2000, 84, 167.
  • 7R.J. Tackett, J.G. Parsons, B.I. Machado, S.M. Gay- tan, L.E. Murr and C.E. Botez: Nanotechnology, 2010, 21, 365703.
  • 8Z.W. Chen, J.K.L. Lai and C.H. Shek: Scripta Mater., 2006, 55, 735.
  • 9A. Chartier, P. D'Arco, R. Dovesi and V.R. Saunders: Phys. Rev. B, 1999, 60, 14042.
  • 10O.Y. Gorbenko, I.E. Graboy, V.A. Amelichev, A.A. Bosak, A.R. Kaul, B. Gfittler, V.L. Svetchnikov and H.W. Zandbergen: Solid State Commun., 2002, 124, 15.

共引文献1

同被引文献38

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部