期刊文献+

通用关联规则挖掘框架的设计与实现

Design and Implementation of General Association Rule Mining Framework
下载PDF
导出
摘要 对适用于多种数据类型的关联规则挖掘框架进行了研究。从概率论出发讨论了支持度计算问题,提出利用有限测度计算项集支持度的方法,分析了Apriori性质的本质,提出通用关联规则挖掘算法的设计思路。在此基础上,设计并实现了通用关联规则挖掘框架,使用该框架进行了事务、空间和时空数据的挖掘实验,验证了其可行性、通用性及正确性。 According to probability theory,we used a limited measure to calculate the support of an item set.Based on this conclusion,a general association rule mining framework was designed and implemented.The implementation of this framework was tested with transactional,spatial and spatio-temporal data.The coherent results inferred the feasibility,universality and validity of this framework.
作者 董林 舒红
出处 《地理空间信息》 2015年第4期68-71,13,共4页 Geospatial Information
基金 国家自然科学基金资助项目(41171313) 苏州市科技计划2013年应用基础研究计划资助项目(SYG201319)
关键词 关联规则 空间关联规则 时空关联规则 支持度 测度 通用框架 association rules spatial association rules spatio-temporal association rules support measure general framework
  • 相关文献

参考文献10

  • 1Agrawal R,Imielinski T,Swami A.Mining Association Rules between Sets of Items in Large Databases[C].1993 ACM International Conference on Management of Data(SIGMOD93),1993.
  • 2Han J,Kamber M,Pel J.Data Mining:Concepts and Techniques[M].Morgan Kaufmann,2011.
  • 3Koperskik,Han J.Discovery of Spatial Association Rules in Geographic Information Databases[C].London:Springer Berlin Heidelberg,1995.
  • 4李光强,邓敏,张维玲,陈翼.利用事件影响域挖掘时空关联规则[J].遥感学报,2010,14(3):468-481. 被引量:7
  • 5董林,舒红,牛宵.利用叠置分析和面积计算实现空间关联规则挖掘[J].武汉大学学报(信息科学版),2013,38(1):95-99. 被引量:9
  • 6Estivill-Castro V,Lee I.Data Mining Techniques for Autonomous Exploration of Large Volumes of Georeferenced Crime Data[C].6th International Conference on Geocomputation,2001.
  • 7Sha Z,Li X.Mining Local Association Patterns from Spatial Dataset[C].Fuzzy Systems and Knowledge Discovery(FSKD),2010.
  • 8李中元.基于空间缓冲矩阵的空间关联知识提取与表达[D].武汉:武汉大学,2012.
  • 9Agrawal R,Srikant R.Fast Algorithms for Mining Association Rules[C].20th International Conference on Very Large Databases(VLDB94),1994.
  • 10董林,舒红,李莎.直接从空间数据中挖掘频繁模式[J].计算机应用研究,2013,30(8):2330-2333. 被引量:4

二级参考文献19

  • 1李向军,孟志青.时态空间中时态序列模式的数据挖掘(英文)[J].微电子学与计算机,2005,22(9):35-39. 被引量:4
  • 2KOPERSKI K, HAN Jia-wei. Discovery of spatial association rules in geographic information databases[ M ] //Advances in Spatial Databas- es. London: Springer-Verlag, 1995 : 47-66.
  • 3I-IAN Jia-wei, KAMBER M. Data mining: concepts and techniques [ M ]. San Francisco : Morgan Kaufmann, 2001.
  • 4LEE I, ESTIVILL-CASTRO V. Exploration of massive crime data sets through data mining techniques[ J]. Applied Artificial IntoUigence, 2011,25 (5) :362-379.
  • 5李中元.基于空间缓冲矩阵的空间关联知识提取与表达[D].武汉:武汉大学,2012.
  • 6SHA Zong-yao, LI Xiao-lei. Mining local association patterns from spatial dataset[ C]//Proc of the 7th International Conference on Fuzzy Systems and Knowledge Discovery. Washington DC: IEEE Computer Society, 2010 : 1455-1460.
  • 7AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[ C] //Proc of the 20th International Conference on Very Large Databases. San Francisco : Morgan Kanfmann, 1995 : 432-444.
  • 8Koperski K,Han J. Discovery of Spatial Association Rules in Geographic Information Databases[A].1995.
  • 9Han J;Kamber M;Pei J.Data Mining:Concepts and Techniques(3rd ed)[M]北京:机械工业出版社,2012.
  • 10马荣华;蒲英霞;马小冬.GIS空间关联模式发现[M]北京:科学出版社,2007.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部