期刊文献+

线性-线性分式型区间系数双层规划问题的遗传算法 被引量:1

Genetic algorithm for solving linear-linear fractional bilevel programming problems with interval coefficients
下载PDF
导出
摘要 针对一类上层为线性规划、下层为线性分式规划的区间系数双层规划问题,提出了一种基于系数取值区间搜索的遗传算法。首先,对下层目标系数进行个体编码,使得对每一编码个体,原问题被转化为确定的双层规划问题;其次,利用分式规划的最优性条件求解得到确定性问题;最后,算法通过不断进化下层目标系数找到最好最优解和最差最优解。数值仿真结果表明,该算法是可行并有效的。 For a class of bilevel programming problems with interval coefficients, in which the upper-level problem is linear, whereas the lower-level problem is a linear fractional program, a genetic algorithm was presented by taking the coefficient intervals as the searching space. Firstly, individuals could be gotten by encoding the lower-level objective coefficients such that the original problem could be transformed into certain bilevel programs for each encoded individual; in addition, the optimality results were used to solve these certain problems; finally, the best and the worst solutions could be obtained by evolving the coefficients of the lower level objective. The simulation results show that the proposed algorithm is feasible and efficient.
出处 《计算机应用》 CSCD 北大核心 2015年第A01期98-100,109,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61463045 61065009) 青海省自然科学基金资助项目(2013-Z-937Q)
关键词 区间系数 双层规划 遗传算法 最优化条件 最优解 interval coefficient bilevel programming genetic algorithm optimality condition optimal solution
  • 相关文献

参考文献14

  • 1胡长英.双层规划在管理中的应用[M].北京:知识产权出版社,1998.
  • 2高自友,张好智,孙会君.城市交通网络设计问题中双层规划模型、方法及应用[J].交通运输系统工程与信息,2004,4(1):35-44. 被引量:84
  • 3CALVETE H I, GALE C. The bilevel linear fractional programming problem[ J]. European Journal of Operational lteseareh, 1999, 114 (1): 188 -197.
  • 4WHITE D J, ANANDALINGAM G. A penalty function approach for solving bilevel linear programming[ J]. Journal of Global Optimiza- tion, 1993,3(4): 397 -419.
  • 5樊扬扬,李和成.一类区间系数线性双层规划问题的遗传算法[J].计算机应用,2014,34(1):185-188. 被引量:4
  • 6Sohrab Effati,Morteza Pakdaman.Solving the Interval-Valued Linear Fractional Programming Problem[J].American Journal of Computational Mathematics,2012,2(1):51-55. 被引量:1
  • 7WU H-C. On interval-valued nonlinear programming problem[ J]. Journal of Mathematical Analysis and Applications, 2008, 338(1) : 299 -316.
  • 8INUIGUCHI M, KUME Y. Goal programming problems with interval coefficients and target intervals[ J]. European Journal of Operational Research, 1991,52(3) : 345 - 360.
  • 9CHANAS S, KUCHTA D. Muhiobjective programming in optimiza- tion of interval objective functions - a generalized approach[ J]. European Journal of Operational Research, 1996, 94(3) : 594 -598.
  • 10ANKAN F, GUNGOR Z. A two-phase approach for mult-iobjective programming problems with fuzzy coefficients[ J]. Information Sci- ence: an International Journal, 2007, 177(23) : 5191 -5202.

二级参考文献20

  • 1FANG L,LI H C.A comment on "cost efficiency in data envelop-ment analysis with data uncertainty "[J].European Journal of Opera-tional Research,2012,220(2):588-590.
  • 2HANSEN P,JAUMARD B,SAVARD G.New branch-and-boundrules for linear bilevel programming[J]SIAM Journal on Scientificand Statistical Computing,1992,13(3):1194-1217.
  • 3VICENTE L,SAVARD G,JUDICE J.Descent approaches forquadratic bilevel programming[J].Journal of Optimization Theoryand Applications,1994,81(2):379-399.
  • 4KOSUCH S,BODIC P L,LEUNG J,et al On a stochastic bilevelprogramming problem[J].Networks,2012,59(1):107-116.
  • 5MENG Z Q,DANG C Y,SHEN R,et al.An objective penaltyfunction of bilevel programming[J].Journal of Optimization Theoryand Applications,2012,153(2):377-387.
  • 6LIU Y H,SPENCER T H.Solving a bilevel linear program when theinner decision maker controls few variables[J].European Journal ofOperational Research,1995,81(3):644-651.
  • 7BIALAS W F,KARWAN M H.On two-level optimization[J].IEEE Transactions on Automatic Control,1982,27(1):211-214.
  • 8ISHIBUCHI H,TANAKA H.Multiobjective programming in opti-mization of the interval objective function[J].European Journal ofOperational Research,1990,48(2):219-225.
  • 9CHINNECK J W,RAMADAN K.Linear programming with inter-val coefficients[J].Journal of the Operational Research Society,2000,51(2):209-220.
  • 10TONG S C.Interval number and fuzzy number linear programming[J].Fuzzy Sets and Systems,1994,66(3):301-306.

共引文献86

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部