期刊文献+

改进的压缩采样匹配追踪算法 被引量:5

Modified compressed sampling pursuit matching algorithm
下载PDF
导出
摘要 针对压缩采样匹配追踪(Co Sa MP)算法重构精度相对较差的问题,为了提高算法的重构性能,提出了一种基于伪逆处理改进的压缩采样匹配追踪(MCo Sa MP)算法。首先,在迭代前,对观测矩阵进行伪逆处理,以此来降低原子间的相干性,从而提高原子选择的准确性;然后,结合正交匹配追踪算法(OMP),将OMP算法迭代K次后的原子和残差作为Co Sa MP算法的输入;最后,每次迭代后,通过判断残差是否小于预设阈值来决定算法是否终止。实验结果表明,无论是对一维高斯随机信号还是二维图像信号,MCo Sa MP算法的重构效果优于Co Sa MP算法,能够在观测值相对较少的情况下,实现信号的精确重构。 Aiming at the problem that Compressed Sampling Matching Pursuit ( CoSaMP) algorithm has low accuracy in reconstruction, in order to improve the reconstruction performance of CoSaMP algorithm, , based on pseudo-inverse processing, an improved greedy algorithm—Modified Compressed Sampling Matching Pursuit ( MCoSaMP ) was proposed. Firstly, before each iteration, the proposed algorithm did pseudo-inverse processing on observation matrix, which could reduce the coherence between the atoms, thereby improving the accuracy of the selected atoms. Secondly, combined with Orthogonal Matching Pursuit ( OMP) algorithm, MCoSaMP used the atoms and residual as the input parameters of CoSaMP after OMP algorithm iterating K times. Finally, after each iteration, the residual was used to determine whether to stop algorithm by being under a preset threshold or not. The experimental results show that the proposed algorithm performs better than CoSaMP algorithm for both one-dimensional Gaussian random signal and two-dimensional image signal, which can exactly reconstruct the original signal with relatively small number of observations.
作者 邢岩辉 林云
出处 《计算机应用》 CSCD 北大核心 2015年第A01期331-334,共4页 journal of Computer Applications
基金 长江学者和创新团队发展计划项目(IRT1299) 重庆市科委重点实验室专项经费资助项目(CSTC)
关键词 压缩感知 稀疏信号 贪婪算法 压缩采样匹配追踪 正交匹配追踪 Compressed Sensing (CS) sparse signal greedy algorithm Compressed Sampling Matching Pursuit(CoSaMP) Orthogonal Matching Pursuit (OMP)
  • 相关文献

参考文献14

  • 1DONOHO D L. Compressed sensing [ J]. IEEE Transactions on In- formation Theory, 2006, 52(4): 1289- 1306.
  • 2DONOHO D L. Extensions of compressed sensing [ J]. Signal Pro- eessing, 2006, 86(3): 533-548.
  • 3CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete froquency informa- tion [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489 - 509.
  • 4CANDleS E, TAO T. Near-optimal signal recovery from random pro- jections: universal encoding strategies? [ J]. IEEE Transactions on Information Theory, 2006, 52( 12): 5406-5425.
  • 5CANDES E, ROMBERG J. Quantitative robust uncertainty princi- ples and optimally sparse decompositions [ J]. Foundations of Com- putational Mathematics, 2006, 6(2): 227-254.
  • 6CANDES E, ROMBERG J, TAO T. Stable signal recovery from in- complete and inaccurate measurements [ J]. Communications on Pure and Applied Mathematics, 2006, 59(8) : 1207 - 1223.
  • 7MALLAT S, ZHANG Z. Matching pursuit with time-frequency dic- tionaries [J]. IEEE Transactions on Signal Processing, 1993, 41 (12) : 3397 -3415.
  • 8TROPP J A, GILBBERT A C. Signal recovery from random meas- urements via orthogonal matching pursuit [ J]. IEEE Transactions on Information Theory, 2007, 53(12) : 4655 -4666.
  • 9NEENELL D, VETSHYNIN R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [ J]. Foundations of Computational Mathematics, 2009, 9 (3) : 317 - 334.
  • 10NEEDELL D, VERSHYNIN R. Signal recovery from incomplete and inaccurate measurement via regularized orthogonal matching pursuit [ J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310-316.

同被引文献26

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部