摘要
为了改善非高斯噪声背景下信号的检测性能,将粒子群算法优化的神经网络(PSO-BP)和滤波器组重构的小波包变换(WPT)相融合,提出一种改进小波包神经网络(WPT-BP)的信号检测方法。首先选用Ackley函数验证PSO-BP具有较强的函数极值寻优能力,然后采用仿真信号序列检验改进WPT-BP检测信号的有效性,最后利用改进WPT-BP方法对MIT/BIH心律失常数据库中的心电(ECG)信号进行消噪。MATLAB仿真结果表明,改进WPT-BP在非高斯噪声且信噪比较低的情况下具有良好的消噪能力,是一种非常有效的信号检测方法。
In order to improve the detection performance of signals in the background of non-Gaussian noise, proposed the im- proved wavelet packet neural network(WPT-BP) of a signal detection method. This method fused particle swarm optimization and bank propagation of neural network (PSO-BP)which was optimized by particle swarm and filter bank reconstruction of Wavelet Packet Transform(WPT). First the choice of the Ackley function validated PSO-BP with a strong ability to function extreme opti- mization. Then the validity of improved WPT-BP method was verified by the simulation of the signal sequence. Finally the MIT / BIH Arrhythmia Database of ECG signal was de-noising by using the improved WPT-BP method. The MATLAB simulation showed that the improved wavelet packet neural network had a good noise-canceling capability in the background of non-Gaussian noise and low signal to noise ratio. Thus it was a very effective method to detect signals.
出处
《现代制造工程》
CSCD
北大核心
2015年第8期132-135,156,共5页
Modern Manufacturing Engineering
基金
新疆维吾尔自治区高校科研计划项目(XJEDU2014S068)
昌吉学院科研重点资助项目(2013YJZD002)
关键词
小波包分析
神经网络
非高斯噪声
心电信号
wavelet packet analysis
neural network
non-Gaussian noise
ECG signal