期刊文献+

离子-电子非平衡机制降低中心热斑点火条件 被引量:1

An ion-electron non-equilibrium model for relaxing central hot-spot ignition conditions
下载PDF
导出
摘要 提出通过离子-电子非平衡物理模型来降低惯性约束聚变中心热斑点火的聚变点火条件。在该物理模型中,强调离子比电子具备更高的温度,从而使得热斑的热核聚变反应增强,轫致辐射和电子热传导造成的能量漏失相对降低。通过对中心热斑的自加热分析和热斑燃烧动力学分析,发现相对于平衡聚变点火模型,非平衡模型可以显著扩大聚变点火区在热斑面密度和热斑温度空间的范围。同时采用LARED-S程序的数值模拟,研究了通过尖峰脉冲波形、二次冲击物理机制强化中心热斑聚变点火的非平衡性。 This paper presents an ion-electron non-equilibrium model for relaxing the central hot-spot ignition conditions in inertial confinement fusion.The model emphasizes that the hot-spot ion temperature is higher than its electron temperature,so that the hot-spot nuclear reactions are enhanced and its energy leaks from radiation bremsstrahlung and electron conduction are relatively reduced.Both the hot-spot self-heating analysis and a more comprehensive hot-spot ignition-and-burn dynamics analysis show that as compared with the commonly used equilibrium model,the ignition region would be significantly enlarged in the hotspotρR-Tspace.Simulations are also done using the LARED-S code to show that a tuned radiation-drive wedged-peak pulse,which creates a secondary shock,could be utilized to enhance hot-spot non-equilibrium.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2015年第8期62-67,共6页 High Power Laser and Particle Beams
基金 中国工程物理研究院院长基金项目(201402037) 国家自然科学基金项目(11475032 91130002) 国家高技术发展计划项目(2012AA01A303) 中国工程物理研究院聚变能源科学技术研究中心项目(R2014-0501-01) 国家基础研究项目(2013CB34100)
关键词 离子-电子非平衡 点火条件降低 二次冲击 尖峰脉冲波形 惯性约束聚变 LARED-S ion-electron non-equilibrium ignition condition relaxation secondary shock wedged-peak pulse inertial confinement fusion LARED-S
  • 相关文献

参考文献21

  • 1Nuckolls J,Wood L,Thiessen A,et al.Laser compression of matter to super-high densities:Thermonuclear (CTR) applications[J].Nature,1972,239:139.
  • 2Lindl J.Inertial confinement fusion[M].New York:Springer Press,1998.
  • 3Atzeni S,Meyer-ter-Vehn J.The physics of inertial fusion[M].Oxford:Clarendon Press,2004.
  • 4王淦昌.取之不尽用之不竭的理想能源——激光惯性约束核聚变[J].现代物理知识,1996,0(S1):1-4. 被引量:3
  • 5贺贤土.惯性约束聚变研究进展和展望[J].核科学与工程,2000,20(3):248-251. 被引量:13
  • 6Chang P,Betti R,Spears B,et al.Generalized measurable ignition criterion for inertial confinement fusion[J].Phys Rev Lett,2010,104:135002.
  • 7Kline J,Callahan D,Glenzer S,et al.Hohlraum energetics scaling to 520 TW on the National Ignition Facility[J].Phys Plasmas,2013,20:056314.
  • 8Smalyuk V,Atherton L,Benedetti L,et al.Performance of high-convergence,layered DT implosions with extended-duration pulses at the National Ignition Facility[J].Phys Rev Lett,2013,111:215001.
  • 9Lindl J,Landen O,Edwards J,et al.Review of the national ignition campaign 2009-2012[J].Phys Plasmas,2014,21:020501.
  • 10Dittrich T,Hurricane O,Callahan D,et al.Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility[J].Phys Rev Lett,2014,112:055002.

二级参考文献30

  • 1刘占军,郑春阳,曹莉华,李斌,朱少平.次稠密等离子体对激光与锥形靶相互作用的影响[J].物理学报,2006,55(1):304-309. 被引量:5
  • 2Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high density: thermonuclear(CTR) application[J]. Nature, 1972, 239(15) :139-142.
  • 3Lindl J. Development of the indirect drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Phys Plasmas, 1995, 2(11) :3933-4024.
  • 4I.indl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. PhysPlasmas, 2004, 11(2) :339-491.
  • 5Rosen M D. The physics issues that determine inertial confinement fusion target gain and driver requirements: a tutoral[J]. Phys Plasmas, 1999, 6(5) :1690-1698.
  • 6Dittrich T R, Haan S W, Marinak M M, et al. Capsule design for the National Ignition Facility[J]. Laser and Particle Beams, 1999, 17 (2) :217- 224.
  • 7Bradley P A, Wilson D C. Physics of one-dimensional capsule designs for the National Ignition Facility[J]. Phys Plasmas, 1999, 6(11) 4293-4303.
  • 8Meyer-Ter Vehn J. On energy gain of fusion targets: the model of Kidder and Bodner improved[J]. Nucl Fusion, 1982, 22(4) :561-565.
  • 9Herrmann M C, Tabak M, Lindl J D, et al. Ignition scaling laws and their application to capsule design[J]. Phys Plasmas, 2001, 8(5) : 2296- 2304.
  • 10Betti R, Anderson K, Goncharow V N, et al. Deceleration phase of inertial confinement fusion implosion[J]. Phys Plasmas, 2002, 9(5) : 2277-2286.

共引文献17

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部