期刊文献+

基于局部信息失真建模的图像质量评价方法

Image quality assessment based on local information distortion modeling
下载PDF
导出
摘要 针对传统的基于像素差值统计的方法以及结构相似度方法不能很好地反映主观评价结果的情况,提出了一种利用图像局部信息失真建模的质量评价方法。该方法通过考虑人眼视觉系统的特点,对像素灰度失真、局部对比度失真和局部结构失真进行建模,并利用局部方差作为权重,得到了最终的图像质量评价测度。其物理意义明确,而且计算相对简单。在LIVE图像数据库上的实验表明,本文方法对于jp2k,jpeg,gblur和fastfading失真的质量预测准确性和一致性都很高,均优于结构相似度方法,对于wn失真也有较好的预测结果。与几种公认较好的方法相比,本文方法表现出了很好的预测性能,得到了与人眼主观感知更加一致的结果。 As traditional pixel -difference statistics and structural similarity (SSIM)cannot well reflect subjective e-valuation results,a novel image quality assessment method based on local information distortion modeling is pro-posed.According to some characteristics of human visual system (HVS),models are established for the pixel gray dis-tortion,local contrast distortion and local structure distortion.Taking local variance as weight,the final image quality assessment metric is obtained.The experiments on the LIVE database indicate that the proposed method has high pre-diction accuracy and consistency on distortion types like jp2k,jpeg,gblur and fastfading,and it is better than the SSIM method.Also,a fairly good prediction result is achieved for wn distortion type.Compared with other assessment meth-ods,the proposed method has good predictive performance,and its calculation is quite simple,and it is more consistent with subjective evaluation.
出处 《激光与红外》 CAS CSCD 北大核心 2015年第8期987-993,共7页 Laser & Infrared
基金 国家自然科学基金项目(No.61201117 No.61301042) 国家重大科学仪器设备开发专项(No.2011YQ040082) 国家科技支撑计划(No.2012BA113B04) 江苏省自然基金项目(No.BK2012189) 苏州市科技计划项目(No.ZXY2013001)资助
关键词 图像质量 结构相似度 局部二值模式 局部方差 局部失真 image quality structural similarity local binary pattern local variance local distortion
  • 相关文献

参考文献16

  • 1Sheikh H R,Sabir M F, Bovik A C. A statistical evalua- tion of recent full reference image quality assessment algo- rithms [ J ]. IEEE Transactions on Image Processing, 2006,15( 11 ) :3443 -3452.
  • 2Damera-Venkata N, Kite T D, Geisler W S, et al. Image quality assessment based on a degradation model [ J ]. IEEE Transactions on Image Processing, 2000,9 ( 4 ) : 636 - 650.
  • 3Chandler D M, Hemami S S. VSNR:A wavelet-based vis- ual signal-to-noise ratio for natural images [ J ]. IEEE Transactions on Image Processing, 2007, 16 ( 9 ) : 2284 - 2298.
  • 4Wang Z,Bovik A C,Sheikh H R, et al. Image quality as- sessment : from error visibility to structural similarity [ J ]. IEEE Transactions on Image Processing, 2004, 13 ( 4 ) : 600 -612.
  • 5Sheikh H R, Bovik A C, Veciana G. An information fideli- ty criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Process- ing,2005 ,14(12) :2117 - 2128.
  • 6Sheikh H R, Bovik A C. Image information and visual quality [ J ]. IEEE Transactions on Image Processing, 2006,15 ( 2 ) :430 - 444.
  • 7Zhang L,Zhang L, Mou X Q, et al. FSIM : A feature simi- larity index for image quality assessment [ J ]. IEEE Trans- actions on Image Processing,2011,20( 8 ) :2378 - 2386.
  • 8Aleksandr S, Alexander G, Ahmet M E. An SVD-based grayscale image quality measure for local and global as- sessment [ J ]. IEEE Transactions on Image Processing, 2006,15 (2) :422 - 429.
  • 9Ojala T, Pietikainen M, Harwood D. Performance evalu- ation of texture measure with classification based on Kullbaek discrimination of distributions [ C ]//Proceed- ings of the 12th IAPR International Conference on Pat-tern Recognition ( ICPR 1994 ) , Jerusalem, Israel, 1994:582 -585.
  • 10Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray- scale and rotation invariant texture classification with local binary patterns [ J ]. IEEE Transactions on Pattern Analy- sis and Machine Intelligence ,2002,24 ( 7 ) :971 - 987.

二级参考文献8

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部