期刊文献+

基于光晕层次特点验证的夜间尾灯提取方法 被引量:1

Nighttime taillight pick-up method based on halo layer structure verifying
下载PDF
导出
摘要 针对目前夜间场景下尾灯提取算法存在的颜色和形状适应性受限问题,提出了一种基于尾灯光晕层次特点验证的尾灯提取方法。该方法与基于颜色阈值过滤的方法、基于形状过滤的方法以及基于机器学习的方法相比,具有较好的颜色和形状适应性,算法整体具备了实时性、较高的准确率和较少的误检率。 For current nighttime taillight pick-up algorithms, the color and shape adaptabilities are inadequate. This paper proposes a novel taillight pick-up algorithm based on the halo layer structure verifying. Compared with the current algorithms such as the color thresholding, the shape filtering and the machine learning, the algorithm proposed has a better color and shape adaptability, and has the features of real-time, high accuracy and low false positive rate.
出处 《计算机时代》 2015年第8期6-8,11,共4页 Computer Era
基金 浙江省重大科技专项(2014C01044 2013E60005) 杭州市科技发展计划项目(20122231S03)
关键词 夜间场景 尾灯提取 颜色和形状适应性 光晕层次 nighttime taillight pick-up color and shape adaptabilities layer structure of halo
  • 相关文献

参考文献9

  • 1O'Malley R, Jones E, Glavin M. Rear-Lamp Vehicle Detection and Tracking in Low-Exposure Color Video for Night Conditions[J]. IEEE Transactions on Intelligent Transportation Systems,2010.11 (2):453-462.
  • 2O Malley R, Glavin M, Jones E. Vehicle detection at night based on tail-light detection[C].lst international symposium on vehicular computing systems,2008:2-4.
  • 3Thammakaroon P, Tangamchit P. Predictive brake warning at night using taillight characteristic[C]. International Symposium on Industrial Electronics (ISIE),2009:217-221.
  • 4Alcantarilla P F, Bergasa L M, Jime X. Night time vehicle detection for driving assistance lightbeam controller[C]. Intelligent Vehicles Symposium,Eindhoven,2008:291-296.
  • 5Aft N, Claus C, Stechele W. Hardware/software architecture of an algorithm for vision-based real-time vehicle detection in dark environments[C].Design, Automation and Test in Europe (DATE), ACM, Munich, 2008:176-181.
  • 6Schamm T, von Carlowitz C, Zollner J M. On-road vehicle detection during dusk and at nightICl. Intelligent Vehicles Symposium (IV), San Diego, CA,2010:418-423.
  • 7Zehang S, Bebis G, Miller R. Monocular precrash vehicle detection: features and classifiers[J].IEEE Transactions on Image Processing, 2006.15(7):2019-2034.
  • 8Hong C, Nanning Z, Chong S. Boosted Gabor Features Applied to Vehicle Detection[C].18th International Conference on Pattern Recognition (ICPR),2006:662-666.
  • 9Chun-Che W, Shih-Shinh H, Li-Chen F. Driver assistance system for lane detection and vehicle recognition with night vision[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005),2005:3530-3535.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部