摘要
针对目前夜间场景下尾灯提取算法存在的颜色和形状适应性受限问题,提出了一种基于尾灯光晕层次特点验证的尾灯提取方法。该方法与基于颜色阈值过滤的方法、基于形状过滤的方法以及基于机器学习的方法相比,具有较好的颜色和形状适应性,算法整体具备了实时性、较高的准确率和较少的误检率。
For current nighttime taillight pick-up algorithms, the color and shape adaptabilities are inadequate. This paper proposes a novel taillight pick-up algorithm based on the halo layer structure verifying. Compared with the current algorithms such as the color thresholding, the shape filtering and the machine learning, the algorithm proposed has a better color and shape adaptability, and has the features of real-time, high accuracy and low false positive rate.
出处
《计算机时代》
2015年第8期6-8,11,共4页
Computer Era
基金
浙江省重大科技专项(2014C01044
2013E60005)
杭州市科技发展计划项目(20122231S03)
关键词
夜间场景
尾灯提取
颜色和形状适应性
光晕层次
nighttime
taillight pick-up
color and shape adaptabilities
layer structure of halo