期刊文献+

基于专利分析的我国大数据产业技术竞争态势研究 被引量:25

A Study on the Competition Situation of Big Data Technology in China on the Basis of Patent Analysis
下载PDF
导出
摘要 通过Soopat和Derwent Innovations Index平台,利用专利分析方法从我国本土和全球布局两个视角对我国大数据产业技术竞争态势进行全面扫描。主要从年度申请量、生命周期、国家或地区分布、申请人、专利分类号(IPC)、专利地图、专利引证等角度对我国大数据产业的技术发展趋势、技术竞争区域、技术竞争主体和技术竞争领域等4个方面进行实证分析。结果表明,我国大数据产业技术竞争环境基本形成"内热外冷"的整体格局:大数据技术处于快速增长阶段、技术竞争区域主要以国内为主、高校与企业共同引领技术竞争主体、技术竞争领域保持与全球同步。 By using patent analysis methods, competition situation of big data technology in our country was scanned in Soopat and Der- went Innovations Index patent platform at home and abroad. An empirical investigation about the technological development tendency, competitive regions, competitive subjects, and competitive fields of big data technology in China was then performed from the perspectives of annual trend, patent life-cycle, country or region, applicant, patent IPC, patent map and patent citation, etc. Research shows that compe- tition environment of big data technology in our country was formed. Big data technology is in the stage of rapid growth ,patents are mainly distributed in domestic market, universities and enterprises are jointly the main applicants, and key technology keeps pace with the global ones.
出处 《情报杂志》 CSSCI 北大核心 2015年第7期65-70,共6页 Journal of Intelligence
基金 江苏省博士后科研资助计划"大数据轮动的图书馆学科服务创新研究"(编号:1402106C) 江苏省图书馆学会学术研究课题"大数据轮动的知识服务生态体系构建研究"(编号:14YB34)
关键词 大数据 专利分析 技术竞争情报 核心专利 专利地图 big data patent analysis competitive technical intelligence core patent patent map
  • 相关文献

参考文献23

  • 1Manyika J, Chui M,Brown B, et al. Big Data:The Next Frontier for Innovation, Competition, and Productivity [R] ,2011.
  • 2工信部电信研究院.大数据白皮书[R],2014.
  • 3Ghemawat S, Gobioff H, Leung S T. The Google file system [C]//ACM SIGOPS Operating Systems Review. ACM, 2003, 37(5 ) :29-43.
  • 4Dean J, Ghemawat S. MapReduce:Simplified Data Processing on Large Clusters [ J ]. Communications of the ACM, 2008,51 ( 1 ) : 10/-113.
  • 5Chang F, Dean J, Ghemawat S, et al. Bigtable: A Distributed Storage System for Structured Data [J]. ACM Transactions on Computer Systems (TOCS) ,2008,26 (2) : 1-26.
  • 6Shvacb.ko K, Kuang H, Radia S, et al. The Hadoop Distributed file system [ C ]//Mass Storage Systems and Technologies (MSST) ,2010 IEEE 26th Symposium on IEEE[A] ,2010:1-10.
  • 7McAfee A, Brynjolfsson E. Big Data:the Management Revolu- tion [ J ]. Harvard Business Review,2012,90 ( 10 ) : 60 -68.
  • 8Hu H,Wen Y,Chua T,et al. Towards Scalable Systems for Big Data Analytics: A Technology Tutorial [J]. Access, IEEE, 2014 (2) :652-687.
  • 9孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169. 被引量:2392
  • 10刘智慧,张泉灵.大数据技术研究综述[J].浙江大学学报(工学版),2014,48(6):957-972. 被引量:478

二级参考文献449

共引文献3220

同被引文献307

引证文献25

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部