期刊文献+

一类Leslie-Gower捕食食饵模型的分歧 被引量:1

The Bifurcation of a Class of Leslie-Gower Predator-prey Models
下载PDF
导出
摘要 本文研究了一类具有扩散的Leslie-Gower模型.利用谱分析和稳定性理论得到了两个正常数平衡态的局部稳定性;利用最大值原理、Harnack不等式和能量积分的方法得到了正稳态解的上下界估计和非常数正解的存在性;利用单特征值分歧理论研究了系统发自两个正常数平衡态的解分支,得到了非常数正解的存在性;利用Hopf分歧理论,得到了在平衡解处Hopf分歧的存在性. A Leslie-Gower model with diffusion under homogeneous Neumann boundary con- dition is investigated in this paper. Firstly, the local stability of the constant steady-state is obtained by using the theory of spectral analysis and stability; secondly, by using the maxi- mum principle, Harnack inequalities and energy method, the estimate of the upper and positive lower bound and nonexistence of nonconstant positive steady-state solution are obtained; by further applying simple eigenvalue bifurcation theory, the local bifurcations from the two constant solu-tions and the existence of nonconstant steady-state are given; finally, the constant solution where Hopf bifurcation occurs is obtained by using Hopf bifurcation theory.
作者 李瑞 李艳玲
出处 《工程数学学报》 CSCD 北大核心 2015年第4期557-567,共11页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11271236) 中央高校基本科研业务费专项资金(GK201401004)~~
关键词 LESLIE-GOWER 先验估计 分歧理论 Leslie-Gower a prior estimate bifurcation theory
  • 引文网络
  • 相关文献

参考文献10

  • 1Zhang N, Chen F D, Su Q Q, et al. Dynamic behaviors of a harvesting Leslie-Gower predator-prey model[J]. Discrete Dynamics in Nature and Society, 2011, 15(1): 309-323.
  • 2Zhou J, Shi J P. The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie- Gower predator-prey model with Holling-type II functional responses[J]. Journal of Mathematical Analysis and Applications, 2013, 405(2): 618-630.
  • 3Zhu C R, Lan K Q. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates[J]. Discrete and Continuous Dynamical Systems-Series B, 2010, 14(1): 289- 3O6.
  • 4Gupta R P, Banerjee M, Chandra P. Bifurcation analysis and control of Leslie-Gower predator-prey model with Michaelis-Menten type prey-harvesting[J]. Differential Equations and Dynamical Systems, 2012, 20(3): 339-366.
  • 5Casten R G, Holland C J. Stability properties of solutions to systems of reaction-diffusion equations[J]. SIAM Journal on Applied Mathematics, 1977, 33(2): 353-364.
  • 6Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion[J]. Journal of Differential Equations, 1996, 131(1): 79-131.
  • 7Lin C S, Ni W M, Takagi I. Large amplitude stationary solutions to a chemotaxis system[J]. Journal of Differential Equations, 1988, 72(1): 1-27.
  • 8Smoller J. Shock Waves and Reaction-Diffusion Equations[M]. Berlin: Springer-Verlag, 1983.
  • 9Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation[M]. Cambridge: Cambridge University Press, 1981.
  • 10马晓丽.一类自催化反应系统的Hopf分歧与稳定性[J].工程数学学报,2011,28(3):343-353. 被引量:1

二级参考文献10

  • 1Ibanez J L,Velarde M G.Multiple steady states in a simple reaction-diffusion model with Michaelis-Menten (first-order Hinshelwood-Langmuir) saturation law:the limit of large separation in the two diffusion constants[J].Journal of Mathematical Physics,1978,19:151-156.
  • 2Bonilla L L,Velarde M G.Singular perturbations approach to the limit cycle and global patterns in a nonlinear diffusion-reaction problem with autocatalysis and saturation law[J].Journal of Mathematical Physics,1979,20:2692-2703.
  • 3Ruan W H.Asymptotic behavior and positive steady-state solutions of a reaction-diffusion model with autocatalysis and saturation law[J].Nonlinear Analysis Theory,Method and Application,1993,21:439-456.
  • 4Du Y H.Uniqueness multiplicity and stability for positive solutions of a pair of reaction-diffusion equations[J].Proceedings of the Royal Society of Edinburgh A,1996,126:777-809.
  • 5Peng R,Shi J P,Wang M X.On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law[J].Nonlinearity,2008,21:1471-1488.
  • 6Yi F Q,Wei J J,Shi J P.Bifurcation and spatio-temporal patterns in a diffusive homogenous predator-prey system[J].Journal of Differential Equations,2009,246(5):1944-1977.
  • 7Su Y,Wei J J,Shi J P.Hopf bifurcations in a reaction-diffusion population model with delay effect[J].Journal of Differential Equations,2009,247(5):1156-1184.
  • 8Wei J J,Li M Y.Hopf bifurcation analysis in a delayed Nicholson blowflies equation[J].Nonlinear Analysis,2005,60:1351-1367.
  • 9Hassard B D,Kazarinoff N D,Wan Y H.Theory and Application of Hopf Bifurcation[M].Cambridge:Cambridge University Press,1981.
  • 10Wiggins S.Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].New York:Springer-Verlag,1991.

同被引文献5

引证文献1

二级引证文献1

;
使用帮助 返回顶部