期刊文献+

结合主动学习和自动标注的评价对象抽取方法 被引量:3

Opinion target extraction with active-learning and automatic annotation
原文传递
导出
摘要 提出了结合主动学习和自动标注的评价对象抽取方法。具体实现过程中,首先,利用少量的已标注样本训练分类器,对非标注样本进行测试,获取自动标注结果及其置信度;其次,通过置信度计算每个样本的整体置信度,挑选出低置信度即不确定性高的样本待标注;最后,对待标注样本中置信度低的词语进行人工标注,而置信度高的部分则采用自动标注结果。实验表明,该方法可以在确保抽取性能的同时有效地减小人工标注语料的开销。 An opinion target extraction method combined active-learning and automatic annotation is introduced. Firstly, the results of automatically annotation with the confidence are obtained by using a few of labeled corpus to train the classifier to test the unlabeled samples; secondly, the samples of low confidence is annotated by calculating the confidence of every sample; finally, the words of low confidence in the selected samples is annotated manually, while the others are adopted the results of automatic annotation. The empirical results demonstrate that the proposed method effectively reduces the annotation cost and achieves good performance on opinion target extraction.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2015年第7期38-44,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61375073)
关键词 情感分析 评价对象抽取 主动学习 自动标注 sentiment analysis opinion target extraction active-learning automatic annotation
  • 相关文献

参考文献15

  • 1PANG Bo, LEE L. Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(1-2):1-135.
  • 2PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques[C]//Proceedings of EMNLP-02. Stroudsburg: Association for Computational Linguistics, 2002:79-86.
  • 3赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848. 被引量:537
  • 4LEWIS D, GALE W. Training text classifiers by uncertainty sampling[C]//Proceedings of SIGIR-94.London:Springer-verlag, 1994: 3-12.
  • 5HU Minqing, LIU B. Mining opinion features in customer reviews[C]//Proceedings of AAAI-2004. California: AAAI Press, 2004: 755-760.
  • 6LI Binyang, ZHOU L, FENG S, et al. A unified graph model for sentence-based opinion retrieval[C]// Proceedings of ACL.Stroudsburg:Association for Computational Linguistics, 2010:1367-1375.
  • 7ZHUANG Li, JING F, ZHU X. Movie review mining and summarization[C]//Proceedings of CIKM-2006. New York: ACM, 2006: 43-50.
  • 8JAKOB N. GUREVYCH I. Extracting opinion targets in a single and cross-domain setting with conditional random fields[C]//Proceedings of EMNLP-2010.Stroudsburg: Association for Computational Linguistics, 2010: 1035-1045.
  • 9王荣洋,鞠久朋,李寿山,周国栋.基于CRFs的评价对象抽取特征研究[J].中文信息学报,2012,26(2):56-61. 被引量:38
  • 10龙军,殷建平,祝恩,赵文涛.主动学习研究综述[J].计算机研究与发展,2008,45(z1):300-304. 被引量:31

二级参考文献51

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2倪茂树,林鸿飞.基于关联规则和极性分析的商品评论挖掘[C]//第三届全国信息检索与内容安全学术会议,2007:635-642.
  • 3[1]D Cohn,Atlas R Ladner.Improving generalization with active learning.Machine Learning,1994,5(2):201-221
  • 4[2]Y Freund,H S Seung,E Shamir,et al.Selective sampling using the query by committee algorithm.Machine Learning,1997,28(2-3):133-168
  • 5[3]M Kaariainen.Active learning in the non-realizable case.In:Proc of the 17th Int'l Conf on Algorithmic Learning Theory.Berlin:Springer,2006.63-77
  • 6[4]M -F Balcan,A Beygelzimer,J Langford.Agnostic active learning.In:Proc of the 23rd Int'l Conf on Machine Learning.San Francisco,CA:Morgan Kaufmann,2006
  • 7[5]S Dasgupta.Coarse sample complexity bounds for active learning.In:Proc of Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2005
  • 8[6]S Dasgupta,A T Kalai,C Monteleoni.Analysis of perceptron-based active learning.In:Proc of the 18th Annual Conf on Learning Theory.Berlin:Springer,2005
  • 9[7]I Dagon,S Engelson.Committee-based sampling for training probabilistic classifiers.In:Proc of the 12th Int'l Conf on Machine Learning.San Francisco,CA:Morgan Kaufmann,1995.150-157
  • 10[8]S Arganmon-Engelson,I Dagon.Committee-based sample selection for probabilistic classifiers.Journal of Artificial Intelligence research,1999,11:335-360

共引文献597

同被引文献27

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部