期刊文献+

具有Osgood型生成元的多维倒向重随机微分方程 被引量:1

Multidimensional backward doubly stochastic differential equations with generators of Osgood type
原文传递
导出
摘要 研究了一类多维倒向重随机微分方程,其生成元f关于y满足Osgood条件,且生成元g关于y满足一类新的非Lipschitz条件。建立了该类方程的一个解的存在唯一性定理和一个稳定性定理,并给出了该类方程在一维情形下解的比较定理。 A class of multidimensional backward doubly stochastic differential equations whose generator f satisfies the Osgood condition in y and generator g satisfies non-Lipschitz condition in y was studied. An existence and uniqueness theorem and a stability theorem of solutions for this kind of equations were established, and a comparison theorem for solution of the class of one-dimensional situation was proposed.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2015年第8期24-33,共10页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11371362)
关键词 倒向重随机微分方程 Osgood条件 存在唯一性定理 稳定性定理 比较定理 backward doubly stochastic differential equations Osgood condition existence and uniqueness theorem stability theorem comparison theorem
  • 相关文献

参考文献4

二级参考文献15

  • 1Pardoux E, Peng S. Backward doubly SDES and systems of quasilinear SPDEs[J]. Probab Theory Related Fields, 1994,98 : 200 -227.
  • 2Matoussi A,Seheutzow M. Stochasti PDES driven by nonlinear noise and Backward doubly SEDs driven by nonlinear noise and Backward doubly SDEs[J]. J. Theoret Probab,2002,15:1-39.
  • 3Bihari I. A Generalization of A Lemma of Bellman and Its Application to Uniqueness Problem of Differential Equations[J]. Acta Math. Acad. Sci. Hunger, 1956,7:71-94.
  • 4Mao X, Adapted Solutions of Backward Stochastic Differential Equations with No-Lipschitz Coefficients[J]. Stochastic Process and their Applications, 1995,58:281-292.
  • 5Bihari I. A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations. Acta Math Acad Sci Hungar, 1956, 7:71-94.
  • 6Briand Ph, Delyon B, Hu Y, Pardoux E, Stoica L. Lp solutions of backward stochastic differential equations. Stochastic Process Appl, 2003, 108:109-129.
  • 7Constantin G. On the existence and uniqueness of adapted solutions for backward stochastic differential equations. Analele Universitii din Timioara, Seria Matematic-Informatic, 2001 XXXIX(2): 15-22.
  • 8Hamadne S. Multidimensional backward stochastic differential equations with uniformly continuous coefficients. Bernoulli, 2003, 9(3): 517-534.
  • 9Jia G Y. A uniqueness theorem for the solution of backward stochastic differential equations. C R Acad Sci Paris, Ser I, 2008, 346:439-444.
  • 10Lepeltier J P, San Martin J. Backward stochastic differential equations with continuous coefficient. Statist Probab Lett, 1997, 32:425-430.

共引文献17

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部