期刊文献+

一种基于Blob分析的摄像头模组缺陷检测方法 被引量:6

A defect detection method based on the Blob analysis of the camera module
下载PDF
导出
摘要 针对传统的摄像头模组灰尘人工检测方法的不足,提出了一种基于Blob分析的摄像头模组灰尘检测方法。根据摄像头模组图像传感器(Sensor)的特性,设计了专用的光照系统,获得清晰、满足要求的图像。同时采用了基于Blob分析对摄像头模组Sensor灰尘颗粒进行检测,通过检测的耗时性以及与金相显微镜精度对比,实验结果表明:自行设计的光照系统能够满足Sensor上污点的检测,同时运用Blob分析法对摄像头模组Sensor检测方法的效率较高,该方法能够满足摄像头模组缺陷检测的要求。 According to the defect detection of the traditional artificial of the camera module, it put forward a method based on the Blob analysis of the camera module. On the basis of the characteristic of the camera sensor, we design a special optical system, it can get the distinct and the requirement of the image. At the same time, using the Blob analysis algorithm to detect the dust of the sensor, then we conduct two consuming and the compared with the Microsoft experiments. The result is that the optical system by myself can be satisfied with the needs of the detection, and the efficiency is about 99.7%, and the method can meet the requirement of the detection of the camera module.
出处 《电子设计工程》 2015年第15期19-22,共4页 Electronic Design Engineering
基金 广东省科技厅项目(2009B010900016)
关键词 BLOB分析 光照系统 摄像头模组 缺陷检测 SENSOR Blob analysis illumination system camera module defect defection Sensor
  • 相关文献

参考文献7

  • 1李映.手机摄像模组:像素攀高功能求新[N].中国电子报,2007-09-25.
  • 2马宁.手机摄像头的现状与发展趋势[J].世界电子元器件,2007(7):39-39. 被引量:2
  • 3冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2009.
  • 4张二虎,冯江.Blob分析中基于游程链的连通区域标记[J].应用科学学报,2008,26(5):536-540. 被引量:21
  • 5Carmona E J,Martnez Cantos J,MIRA J. A new video segmentation method of moving objects based blob level knowledge[J]. Pattern Recognition Letters, 2008,29 (3) :272 - 285.
  • 6TSAI Duming,HUANG Tseyun. Automated surface inspec- tion for statistical textures[J]. Image and Vision Computing, 2003,21 (4) :307-323.
  • 7HU Qing-mao, QIAN Guo-yu. WIESLAW L N. Fast connect- ed-com-ponent labeling in three-dimensional binary images based on itera-tive recursion[J]. Computer Vision and Im- age Understanding, 2005,99 (3) :414-434.

二级参考文献12

  • 1徐利华,陈早生.二值图像中的游程编码区域标记[J].光电工程,2004,31(6):63-65. 被引量:31
  • 2张桂林,陈益新,曹伟,李强.基于跑长码的连通区域标记算法[J].华中理工大学学报,1994,22(5):11-14. 被引量:27
  • 3MESSOM C H, DEMIDENKO S, SUBRAMANJAM K. Size posion identification in real-time image processing using run length encoding [ C ]// Instrumentation and Measurement Technology Conference ( IMTC ) 2002, Anchorage, Reading, 2002:1055 -1060.
  • 4GUPTA G S, WIN T A, MESSOM C, DEMIDENKO S, MUKHOPADHYAY S. Defect analysis of grit-blasted or spray-painted surface using vision sensing techniques [ C ]// Image and Vision Computing, New Zealand, 2003 : 18 - 23.
  • 5CARMONA E J, MARTUNEZ-CANTOS J, MIRA J. A new video segmentation method of moving objects based blob- level knowledge[J]. Pattern Recognition Letters,2008,29 (3) : 272 - 285.
  • 6TSAI Duming, HUANG Tseyun. Automated surface inspection for statistical textures [ J ]. Image and Vision Computing, 2003, 21(4): 307-323.
  • 7Hu Qingmao, QIAN Guoyu, WIESLAW L N. Fast connected-component labelling in three-dimensional binary images based on iterative recursion [ J ]. Computer Vision and Image Understanding, 2005, 99 (3) :414 - 434.
  • 8DILLENCOURT M B, SAMET H, TAMMINEN M. A general approach to connected-component labeling for arbitrary image representations [J]. Journal of the Association for Computing Machinery(ACM), 1992, 39(2) : 253 -280.
  • 9MANOHAR M, RAMAPRIYAN H K. Connected component labeling of binary images on a mesh connected massively parallel processor [ J ]. Computer Vision, Graphic and Image Processing, 1989,45(2): 133-149.
  • 10SUZUKI K, HORIBA I, SUGIE N. Linear-time connected- component labeling based on sequential local operations [J]. Computer Vision and Image Understanding, 2003, 89(1) : 1 -23.

共引文献43

同被引文献38

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部