期刊文献+

基于遗传算法BP神经网络的恒压供水系统的研究 被引量:3

Research on constant pressure water supply system based on PID algorithm of optimized BP neural network by genetic algorithm
下载PDF
导出
摘要 针对恒压供水系统普遍存在的非线性、大滞后和不确定的特点,设计了一种基于遗传算法BP神经网络的PID控制器,该控制器先通过遗传算法优化BP神经网络的初始权值,再利用BP神经网络的自学习和自适应能力,自动调整PID控制器的参数,达到自适应控制目的,解决了传统PID控制算法难以控制未知复杂系统的问题。软件仿真表明,本系统的恒压性能和动态性能有较大的提高,控制效果比较理想。 Aimed at the characteristics of nonlinearity, large delay and uncertainty for constant pressure water supply system, the paper proposes a PID controller based on optimized BP neural network by genetic algorithm. Firstly, the initial weights of BP neural network are optimized by genetic algorithm. And then the parameters of PID controller are adjusted by BP neural network which has self-learning and adaptive re-use capabilities , which achieves the purpose of adaptive control. The PID control algorithm solves the difficulties of unknown PID control of complex systems. The simulation indicates that the constant performance and dynamic performance of the constant pressure water supply system has greatly improved, and the control effect is satisfying.
出处 《电子设计工程》 2015年第15期78-81,共4页 Electronic Design Engineering
关键词 恒压供水系统 遗传算法 BP神经网络 PID控制器 constant pressure water supply system genetic algorithm BP neural network PID controller
  • 相关文献

参考文献6

  • 1JI Hua, LI Zhi-yong. Design of neural network PID controller based on brushless DC motor [C]//Intelligent Computation Technology and Automation, 2009. ICICTA'09. Second International Conference on. IEEE, 2009 (3) :46-49.
  • 2左为恒,郑美容.恒压供水系统中智能控制方式的应用研究[D].重庆:重庆大学,2009.
  • 3庞中华,崔红.系统辨识与自适应控制MATLAB4仿真[M].北京:北京航空航天大学出版社,2013.
  • 4WANG Hong-jun,LI Yan-wei,YUE You-jun. Application of BP neural network intelligent PID controller based on GA in electrode regulator systems of electric arc furnace [C]// Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on. IEEE, 2011:198-202.
  • 5LIN Qing-song, YAO Yu-fei, WANG Jun-xiao. Simulation and application of neural network PID auto-Tuning controller in servo-system [C]//Database Technology and Applications (DBTA), 2010 2nd International Workshop on. IEEE, 2010:1-4.
  • 6董万里,曲东才,董伟洁.一种基于GA-BP算法的PIDNN控制策略[J].兵工自动化,2011,30(2):66-69. 被引量:4

二级参考文献6

  • 1Anthony J.Calise.Neural Networks In Nonlinear Aircraft Flight Control[J].IEEE AES Systems Magazine,July 1996.
  • 2Sajad Najafi Ravadanegh.A New GA-Based and Graph Theory Supported Distribution System Planning.ICIC 2008(15):7-14.
  • 3Yang Zhi,Jie Li,Li Erguo.Adaptive internal model control based on the artificial neural network for time-varying delay systems[J].J of LAN Zhou University (Natural Sciences),2000,36(4):38-44.
  • 4A.Blanco,M.Delgado,M.C.Pegalajar.A real-coded genetic algorithm for training recurrent neural networks[J].Neural Networks 14 (2001):93-105.
  • 5张秀玲.神经网络非线性系统模型参考自适应控制器统一设计法[J].控制与决策,2002,17(2):151-154. 被引量:10
  • 6舒怀林.基于PID神经网络的非线性时变系统辨识[J].自动化学报,2002,28(3):474-476. 被引量:23

共引文献6

同被引文献20

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部