期刊文献+

Web数据挖掘在移动电子商务领域的应用研究 被引量:3

Application Research of Mobile E-commerce Based on Web Data Mining
下载PDF
导出
摘要 随着移动通信技术的飞速发展,移动电子商务以其方便、快捷等优点获得了大量的网络用户。移动互联网端的用户行为分析已经成为迅速发展的知识领域。Web数据挖掘技术作为用户行为分析的基础在移动电子商务领域具有很高的实用价值。文章主要介绍了基于Web的数据挖掘定义及Web的数据特点,并对Web使用模式挖掘的过程和算法进行了重点分析,包括数据的预处理、模式发现和模式分析。除此之外,基于传统企业的电子商务化、业务领域多元化等特点,创新研究了如何建设企业电子化大平台,如何有效收集平台产生的海量数据,如何将Web数据挖掘技术应用于企业等内容。 With the rapid development of mobile communication technology, mobile e-commerce gets a lot of network users because of the advantages of convenient, fast and so on. Behavior analysis of mobile Internet user has become the rapid developed knowledge field. As a basis of user behavior analysis Web data mining technology has a high practical value in the field of mobile e-commerce. The definition of Web-based data mining and features of Web data 'are introduced in the article, the processes and algorithms of Web usage mining are focused researched, including data preprocessing, pattern discovery and pattern analysis. In addition, based on the traditional enterprise involving e-commerce and business field diversification, how to construct large-scale e-business online platform, how to effectively collect vast amounts of data generated by the platform and how to use data mining technology to serve enterprises are innovatively researched.
出处 《价值工程》 2015年第26期245-249,共5页 Value Engineering
基金 河北省高等学校科学技术研究项目编号:Z2014167
关键词 移动电子商务 WEB挖掘技术 电子化平台 用户行为模式 mobile e-commerce Web data mining electronic platform user behavior analysis
  • 相关文献

参考文献11

  • 1毛国军.数据挖掘技术与关联规则挖掘算法研究[D].北京工业大学,2003.
  • 2Jiaweihan,Mieheline Kambe.数据挖掘概念和技术[M].机械工业出版社,2008:56-60.
  • 3王立伟.数据挖掘研究现状综述[J].图书与情报,2008(5):41-46. 被引量:23
  • 4钱卫宁,魏藜,王焱,钱海蕾,周傲英.一个面向大规模数据库的数据挖掘系统[J].软件学报,2002,13(8):1540-1545. 被引量:28
  • 5D.Fetterly,M.Manasse,M.Najork and A.Ntoulas.Detecting spam Web pages through content analysis[C].Proc.15th WWW Conference,2006:81-90.
  • 6Z.Zhang,J.Chen,and X.Li.A preprocessing framework and approach for Web applications[J].Journal of Web Engineering,2004(,2):171-190.
  • 7Johannes Furnkranz.Web Mining[C].Data Mining and Knowledge Discovery Handbook,2006(4):895-926.
  • 8李超锋,卢炎生.Web使用挖掘技术分析[J].计算机科学,2006,33(2):220-222. 被引量:4
  • 9马妮娜.数据库新的应用技术——数据挖掘技术[J].中国电子商务,2003(4):70-72. 被引量:7
  • 10Kihl M,Odling P,Lagerstedt C,et al.Traffic analysis and characterization of Internet user behavior[C],2010 International Congress on.IEEE,2010:224-231.

二级参考文献39

  • 1[1]Carter, C.L., Hamilton, H.J. Efficient attribute-oriented algorithms for knowledge discovery from large databases. IEEE Transactions on Knowledge and Data Engineering, 1998,10(2):193~208.
  • 2[2]Kukich, K. Techniques for automatically correcting words in text. ACM Computing Surveys, 1992,24(4):377~439.
  • 3[3]Tian, Zeng-ping, Lu, Hong-jun, Ji, Wen-yun, et al. An n-gram-based pproach for detecting approximately duplicate database records. International Journal on Igital Library, 2001,5(3):325~331.
  • 4[4]Agrawal, R., Srikant, R. Fast algorithms for mining association rules in large databases. In: Proceedings of the VLDB. 1994. 487~499.
  • 5[5]Yu, Fang, Jin, Wen. An effective approach to mining exeption class association rules. In: Proceedings of the Web-Age Information Management 2000. 2000. 145~150.
  • 6[6]Agrawal, R., Srikant, R. Mining sequential patterns. In: Proceedings of the ICDE. 1995. 3~14.
  • 7[7]Agrawal, R., Ghosh, S., Imielinski, T., et al. An interval classifier for database mining applications. In: Proceedings of the VLDB. 1992. 560~573.
  • 8[8]Zhou, Ao-ying, Qian, Wei-ning, Qian, Hai-lei, et al. A hybrid approach to clustering in very large databases. In: Proceedings of the 5th PAKDD. 2001. 519~524.
  • 9[9]Ester, M., Kriegel, H.P., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the KDD. 1996. 226~231.
  • 10[10]Zhou, Ao-ying, Zhou, Shui-geng, Cao, Jing, et al. Approaches for scaling DBSCAN algorithm to large spatial databases. Journal of Computer Science and Technology, 2000,15(6):509~527.

共引文献58

同被引文献8

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部