期刊文献+

多维傅里叶变换光谱

Optical Multidimensional Fourier-transform Spectroscopy
下载PDF
导出
摘要 二维或多维傅里叶变换谱的概念最早是在核磁共振(NMR)谱学中提出的,随着激光技术的发展,飞秒脉冲激光的实现使多维傅里叶变换谱的概念被引入到了光学领域,以脉冲激光代替NMR中的射频(RF)场,激光波长从红外延伸到可见光波段。多维傅里叶变换光谱可以同时提供的信息包括量子态上布居数以及量子态间的耦合,所以多维谱可以提供一维谱所无法获取的反映量子系统演化动力学的信息,如量子系统中的能量转移以及分子间的相互作用等。人们使用多维傅里叶变换光谱的方法对碱金属原子、量子阱、分子等量子系统中的动力学过程进行了一系列的研究。 The concept of two-dimensional or multidimensional Fourier-transform (2DFT or MDFT) spec- troscopy originated from nuclear magnetic resonance (NMR) spectroscopy, the development of femtosecond laser technology allows the MDFT spectroscopy to be extensively implemented in the optical region in recent years, where the conventionM radio frequency (RF) field in the NMR is replaced by pulse lasers with wavelength ranging from infrared to visible domain. The opti- cal MDFT spectroscopy can be used to identify the population of each quantum state and the coupling between quantum states, thus to determine the evolutionary dynamics of quantum sys- tems, such as energy transfer in quantum systems and molecules interactions, in addition to the information obtained from one-dimensional spectroscopy. The optical MDFT spectroscopy has been successfully applied in the studies of a variety of quantum systems including alkali atoms, quantum wells, molecules, etc.
出处 《物理学进展》 CSCD 北大核心 2015年第4期177-187,共11页 Progress In Physics
基金 国家重大科学研究计划(编号:2013CB922003) 国家自然科学基金(批准号:11474178)资助
关键词 二维傅里叶变换光谱 四波混频 超快激光 锁相 Two-dimensional Fourier-transform spectroscopy Four-wave mixing Ultrafast pulselaser Phase lock
  • 相关文献

参考文献55

  • 1Bristow A D, Karaiskaj D, Dai X, Zhang T, Carlsson C, Hagen K R, Jimenez R, Cundiff S T. Rev. Sci. Instrum., 2009, 80(7): 073108.
  • 2Cho M. Chem. Rev., 2008, 108(4): 1331-1418.
  • 3Hamm P, Lim M, Hochstrasser R M. J. Phys. Chem. B, 1998, 102(31): 6123-6138.
  • 4Asplund M C, Zanni M T, Hochstrasser R M. PNAS, 2000, 97(15): 8219-8224.
  • 5Golonzka O, Khalil M, DemirdSven N, Tokmakoff A. Phys. Rev. Lett., 2001, 86(10): 2154-2157.
  • 6Sul S, Karaiskaj D, Jiang Y, Ge N. J. Phys. Chem. B, 2006, 110(40): 19891-19905.
  • 7Hybl J D, Albrecht A W, Gallagher Faeder S M, Jonas D M. Chem. Phys. Lett., 1998, 297(3): 307- 313.
  • 8Tian P, Keusters D, Suzaki Y, Warren W S. Science, 2003, 300(5625): 1553-1555.
  • 9Borca C N, Zhang T, Li X, Cundiff S T. Chem. Phys. Lett, 2005, 418(4-6): 311-315.
  • 10Cowan M L, Ogilvie J P, Miller R J D. Chem. Phys. Left., 2004, 386(1-3): 184-189.

二级参考文献107

  • 1Harris S E. Physics Today, 1997, 50:36-42.
  • 2Gea-Banacloche J, Li Y, Jin S, Xiao M. Phys. Rev. A, 1995, 51:576-584.
  • 3Agarwal G S, Harshawardhan W. Phys. Rev. Left., 1996, 77:1039-1042.
  • 4Zibrov A S, Ye C Y, Rostovtsev Y V, Matsko A B, Scully M O. Phys. Rev. A, 2002, 65:043817.
  • 5Li Y, Xiao M. Opt. Left., 1996, 21:1064-1066.
  • 6H. Kang, G. Hernandez, Y. Zhu, Superluminal and slow light propagation in cold, Physical Review A, 70 (2004) 061804.
  • 7Kang H, Hernandez G, Zhu Y. Phys. Rev. Left., 2004, 93:073601.
  • 8Zuo Z, Sun J, Liu X, Jiang Q, Fu G, Wu L, Fu P. Phys. Rev. Lett., 2006, 97:193904.
  • 9Ma H, de Aradjo C B. Phys. Rev. Lett., 1993, 71: 3649-3652.
  • 10Zhang Y, Brown A W, Xiao M. Phys. Rev. Left., 2007, 99:123603.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部