期刊文献+

面向移动学习的云资源信息流无源定位技术 被引量:2

Technology of Passive Location for Cloud Resource Information of Mobile Learning
下载PDF
导出
摘要 在移动学习过程中,需要对云资源信息流节点准确定位,提高网络学习效率,增强学习网络转换信道均衡能力。传统方法中采用基于向量随机学习的网络信道切换队列整合方法,实现对信任节点的定位,但当出现信任时隙局部性交叉项时,定位性能不好。提出一种改进的面向移动学习的云资源信息流无源定位技术。采用M-learning随机场学习模型,通过局部性交叉项补偿进行信息链单流量解析模型设计,在大数据环境下,对信任节点的数据种类进行无源定位分类,然后通过云资源信息流节点任务调度方法,提高网络的信任度,由此提高对云资源信息流的无源定位能力。仿真结果表明,该算法能有效提高对M-learning环境下的云资源信息流的定位精度,提高学习效率和资源分配能力。在学习资源共享调度等领域具有较好的应用价值。 In the process, the need for cloud resource information flow node position accurately, improve the network learning efficiency, enhance network conversion channel equalization ability of learning. Integration method of network channel handoff queue random vector based on learning by traditional method, realize the localization of the trust of nodes, but when local trust time slot cross terms, the positioning performance is not good. Put forward a kind of improved cloud resource information for mobile learning flow of passive location technology. Using the M-learning random field model of learning, through local cross term compensation information chain single flow analytical model design, in large data environment, type of data on trust node passive location and classification, and then through the cloud resource information flow node task scheduling method, enhancing the degree of belief network, thereby improving the passive location ability of cloud resources the flow of information. The simulation resuhs show that the algorithm can effectively improve the accuracy of localization of M-learning under the environment of cloud resource information flow, improve the learning efficiency and resource allocation. It has good application value in the fields of learning resource sharing scheduling.
作者 花丽
出处 《科技通报》 北大核心 2015年第8期75-77,共3页 Bulletin of Science and Technology
基金 泰州市科技局2014年社会指导项目课题
关键词 移动学习 云资源 任务调度 无源定位 mobile learning cloud resources task scheduling passive location
  • 相关文献

参考文献7

二级参考文献110

  • 1王东升,金伟良,龚顺风.运用层次分析法鉴定混凝土桥梁健康状况[J].科技通报,2005,21(1):41-44. 被引量:10
  • 2Bhagwat D,Pollack K,Long DDE,Schwarz T,Miller EL,P-ris JF.Providing high reliability in a minimum redundancy archival storage system.In:Proc.of the 14th Int'l Symp.on Modeling,Analysis,and Simulation of Computer and Telecommunication Systems (MASCOTS 2006).Washington:IEEE Computer Society Press,2006.413-421.
  • 3Zhu B,Li K.Avoiding the disk bottleneck in the data domain deduplication file system.In:Proc.of the 6th Usenix Conf.on File and Storage Technologies (FAST 2008).Berkeley:USENIX Association,2008.269-282.
  • 4Bhagwat D,Eshghi K,Mehra P.Content-Based document routing and index partitioning for scalable similarity-based searches in a large corpus.In:Berkhin P,Caruana R,Wu XD,Gaffney S,eds.Proc.of the 13th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining (KDD 2007).New York:ACM Press,2007.105-112.
  • 5You LL,Pollack KT,Long DDE.Deep store:An archival storage system architecture.In:Proc.of the 21st Int'l Conf.on Data Engineering (ICDE 2005).Washington:IEEE Computer Society Press,2005.804-815.
  • 6Quinlan S,Dorward S.Venti:A new approach to archival storage.In:Proc.of the 1st Usenix Conf.on File and Storage Technologies (FAST 2002).Berkeley:USENIX Association,2002.89-102.
  • 7Sapuntzakis CP,Chandra R,Pfaff B,Chow J,Lam MS,Rosenblum M.Optimizing the migration of virtual computers.In:Proc.of the 5th Symp.on Operating Systems Design and Implementation (OSDI 2002).New York:ACM Press,2002.377-390.
  • 8Rabin MO.Fingerprinting by random polynomials.Technical Report,CRCT TR-15-81,Harvard University,1981.
  • 9Rivest R.The MD5 message-digest algorithm.1992.http://www.python.org/doc/current/lib/module-md5.html.
  • 10U.S.National Institute of Standards and Technology (NIST).Federal Information Processing Standards (FIPS) Publication 180-1:Secure Hash Standard.1995.http://www.itl.nist.gov/fipspubs/fip180-1.htm.

共引文献186

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部