期刊文献+

基于联合粒子滤波和Mean-Shift的运动目标跟踪算法 被引量:1

A Moving Target Tracking Algorithm Based on the Particle Filter and Mean- Shift
下载PDF
导出
摘要 Mean Shift跟踪算法能有效实时对运动目标进行跟踪,但是当目标运动速度过快或者目标被遮挡时,跟踪效果会下降;粒子滤波跟踪算法适用于非线性非高斯环境,其跟踪效果与粒子数息息相关,数量少了导致粒子匮乏,数量多了会影响实时性。为解决上述问题,本文将mean shift和粒子滤波融合。实验表明,本文算法在运动目标速度较快和目标被遮挡时均取得了较好的跟踪效果。 The moving target can be tracked in real time by mean shift, but when the speed of the target is too fast or the target is obscured, the tracking performance will be affected. Particle filter tracking algorithm is suitable for nonlinear and non-Gaussian environment, and its tracking effect is closely related to the number of particles; the small number results in particle scarcity and the large number results in the real-time. To solve these problems, this article will combine mean shift and particle filter. Experiments show that when the target is moving fast and the target is obscured, the algorithm has achieved good tracking results.
作者 杨佳
出处 《科技通报》 北大核心 2015年第8期231-234,共4页 Bulletin of Science and Technology
基金 贵州教育厅项目(20140023)
关键词 粒子滤波 mean SHIFT 联合 目标跟踪 particle filter mean shift union target tracking
  • 相关文献

参考文献5

  • 1张萌,陈恳,李娜,惠明.卡尔曼滤波与粒子滤波之间跟踪模式的优化[J].计算机工程与应用,2012,48(36):129-133. 被引量:4
  • 2G.G.Yin,V.Krishnamurthy.Least mean square algorithms with Markov regime-switching limit[J].IEEE Transactions on Automatic Control,2005,50(5):577-593.
  • 3Zivkovic Z,Krose B.An EM-LIKE algorithm for colorhistogram-based object tracking[C]//.Conference on Computer Vision and Pattern Recognition,Washington DC:IEEE CS,2002:249-254.
  • 4王永忠,梁彦,赵春晖,潘泉.基于多特征自适应融合的核跟踪方法[J].自动化学报,2008,34(4):393-399. 被引量:56
  • 5Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828),2003,25(5):564-577.

二级参考文献21

  • 1Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577
  • 2Isard M, Blake A. CONDENSATION-conditional density propagation for visual tracking. International Journal of Computer Vision. 1998, 29(1): 5-28
  • 3Dewan M, Hager G D. Toward optimal kernel-based tracking, In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2006. 618-625
  • 4Isard M, Blake A. ICONDENSATION: unifying low-level and high-level tracking in a stochastic framework. In: Proceedings of the 5th European Conference on Computer Vision. Springer-Verlag, 1998. 893-908
  • 5Wu Y, Huang T S. Robust visual tracking by integrating multiple cues based on co-inference learning. International Journal of Computer Vision, 2004, 58(1): 55-71
  • 6Perez P, Vermaak J, Blake A. Data fusion for visual tracking with particles. Proceedings of the IEEE. 2004, 92(3): 495--513
  • 7Triesch J, vonder Malsburg C. Self-organized integration of adaptive visual cues for face tracking. In: Proceedings of the 4th IEEE Conference on Automatic Face and Gesture Recognition. Grenoble, France: IEEE, 2000. 102-107
  • 8Spengler M, Schiele B. Towards robust multi-cue integration for visual tracking. Machine Vision and Applications, 2003, 14(1): 50-58
  • 9Xu X, Li B. Head tracking using particle filter with intensity gradient and color histogram. In: Proceedings of IEEE Conference on Multimedia and Expo. IEEE, 2005. 888-891
  • 10Collins R T, Liu Y X, Leordeanu M. Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643

共引文献58

同被引文献14

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部