摘要
研究基于径向基神经网络的变压器故障诊断方法。以绝缘油中6种特征气体作为神经网路的输入,建立了可对变压器低温过热、中温过热、高温过热、低能放电、高能放电和局部放电等6种故障进行故障诊断的径向基神经网络模型。仿真实验研究表明,基于径向基神经网络的变压器故障诊断模型对于超出三比值法编码规则的故障也能进行故障诊断,故障诊断准确率达到91.67%,远远高于三比值法故障诊断准确率。基于径向基神经网络的故障诊断模型建立方法简单,便于在实际中应用。
According to the characteristics of fault types of the transformer ,RBF neural network is used to diagnose transformer fault. The paper regards six gases as inputs of the neural network and establishes RBF neural network model which can diagnose six transformer faults: low temperature overheat, medium temperature overheat, high temperature overheat, low energy discharge, high energy discharge and partial discharge . The Matlab simulation studies show that transformer fault diagnosis model based on RBF neural network diagnosis for failure beyond the traditional three-ratio method. The rate of the transformer fault diagnosis accuracy reaches 91.67% which is also much higher than the traditional three ratio method. At the same time, RBF neural network model is easy to establish and applicable to use.
出处
《科技通报》
北大核心
2015年第8期272-276,共5页
Bulletin of Science and Technology
基金
河南省自然科学基金(项目编号122102210049)
关键词
径向基神经网络
变压器
故障诊断
仿真
RBF neural network
transformer
fault diagnosis
simulation