期刊文献+

低电压电解模拟高砷地下水中As(Ⅲ)的转化研究 被引量:1

Conversion Rate Study of As(Ⅲ)in Simulated High Arsenic Groundwater by Electrolysis at Low Voltage
下载PDF
导出
摘要 建立阴阳极混合和阴阳极隔离的电解池研究模拟高砷地下水中As(Ⅲ)在低电压条件下的转化与去除规律。在混合电解池与分离体系阳极池中,在施加电压为0.1~0.8 V时,水体中的As(Ⅲ)均能转化As(Ⅴ),并得到有效去除。As(Ⅲ)浓度变化动力学符合指数式衰减方程。在As(Ⅲ)转化速率与As(Ⅲ)浓度和电压之间建立数学模型:电压一定时,As(Ⅲ)的转化速率与其浓度成正比;浓度一定时,As(Ⅲ)的转化速率与电压成指数式增长关系。混合体系As(Ⅲ)的转化速率与砷去除速率均高于分离体系,原因是盐桥增大了分离体系的电阻。能耗分析表明,研究的电压范围内,电压越低,As(Ⅲ)转化与去除所消耗的能量越小,混合体系消耗的能量小于分离体系。 Mixed electrolytic cells and separated electrolytic cells have been established to research the conversion and removal of As (Ⅲ ) in simulated high arsenical content groundwater at low voltage. When the applied voltage is 0.1-0.8 V, As (Ⅲ ) can all be converted to As ( V ) and effectively removed in mixed electrolytic cells and anode cells of divided systems. The change kinetics of As ( Ⅲ ) concentration conforms to the exponential decay equation, and the mathematical models are established among the conversion rate of As (Ⅲ ), the conversion rate of As (Ⅲ ) and the voltage. When voltage is constant, the conversion rate of As ( Ⅲ ) is proportional to its concentration; when the concentration of As (Ⅲ ) is constant, the conversion rate of As (Ⅲ ) has an exponential growth relation with voltage. The conversion rate and removal rate of As (Ⅲ ) in mixed electrolytic cells are higher than those in the anode cells of separated systems, for the reason of high resistance of the salt bridge in the separated systems. Energy consumption analysis shows that the consumed energy of the conversion and removal of As ( Ⅲ ) will reduce with the, decrease of voltage, and the consumed energy in mixed systems is less than that in the separation systems.
出处 《环境科学与技术》 CAS CSCD 北大核心 2015年第7期112-118,共7页 Environmental Science & Technology
基金 国家自然科学基金(40902070)
关键词 高砷地下水 低电压 混合电解 隔离电解 转化动力学 high arsenic groundwater low voltage mixed electrolysis divided electrolysis conversion kinetics
  • 相关文献

参考文献24

  • 1Hug S J, Leupin O. Iron-catalyzed oxidation of arsenic ( Ⅲ) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction [J]. Environ Sci Technol, 2003, 37(12) : 2734-2742.
  • 2王颖,吕斯丹,李辛,吴英杰.去除水体中砷的研究进展与展望[J].环境科学与技术,2010,33(9):102-107. 被引量:28
  • 3Sari A, Tuzen M. Biosorption of As(Ⅲ) and As( V ) from aqueous solution by Lichen (Xanthoria parietina) biomass[J]. Sep Sci Technol, 2010, 45(4) :463-471.
  • 4刘懿颉,甘义群,王焰新,马腾,李佳乐.铁矿渣去除水中砷实验研究[J].环境科学与技术,2010,33(3):166-170. 被引量:11
  • 5王晓伟,席北斗,霍守亮,杨天学,夏训峰,刘鸿亮.膜技术在饮用水除砷中的应用研究进展[J].水处理技术,2011,37(6):15-18. 被引量:15
  • 6Amrose S E, Bandaru S R S, Delaire C, et al. Electro- chemical arsenic remediation: field trials in West Bengal[J]. Environment International, 2009(488/489) : 539-546.
  • 7Hansen H K, Nunez P, Jil C. Removal of arsenic from wastewaters by airlift electrocoagulation. Part 2: continuous reactor experiments [J]. Sep Sci Technol, 2008, 43 ( 14 ) : 3663-3675.
  • 8Kobya M, Gebologlu U, Ulu F, et al. Removal of arsenic from drinking water by the electrocoagulation using Fe and A1 electrodes [J]. Electrochim Acta, 2011, 56 (14) : 5060- 5070.
  • 9Parga J R, Cocke D L, Valenzuela J L, et al. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera,Mexico[J]. J Hazard Mater, 2005, 124( 1/2/3 ) : 247-254.
  • 10Wan W, Pepping T J, Banerji T, et al. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation[J]. Water Res, 2011, 45( 1 ) : 384-392.

二级参考文献42

共引文献47

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部