期刊文献+

贝叶斯变量选择及模型平均的研究 被引量:2

Research on Bayesian Variable Selection and Model Averaging
下载PDF
导出
摘要 对多元线性回归问题中的变量选择进行研究,改进现有的贝叶斯自适应抽样(BAS)方法,在实现整体不放回抽样的前提下,局部引进放回抽样的方法,通过数据仿真发现,同样进行贝叶斯模型平均(BMA),改进后的方法预测效果比改进前的BAS预测效果更好。 This paper mainly studies on the variable selection for multiple linear regression model and is to improve the existing Bayesian adaptive sampling method(BAS). Not sampling without replacement all the time but partially adopting sampling with replacement, and we can find, through data simulation, that the predictive effect of improved method is better than former one if Bayesian model averaging(BMA) is equally adopted.
机构地区 河海大学理学院
出处 《统计与信息论坛》 CSSCI 北大核心 2015年第8期20-24,共5页 Journal of Statistics and Information
基金 国家自然科学基金项目<气垫调压室体型优化与运行控制研究>(51379064)
关键词 贝叶斯变量选择 贝叶斯模型平均 贝叶斯自适应抽样 放回抽样 Bayesian variable selection Bayesian model averaging Bayesian adaptive sampling sampling with replacement
  • 相关文献

参考文献17

  • 1Leamer E E.Specification Searches:Ad Hoc Inference with Nonexperimental Data[M].New York:Wiley,1978.
  • 2Draper D.Assessment and Propagation of Model Uncertainty[J].Journal of the Royal Statistical Society,1995,57(1).
  • 3王大荣,张忠占.线性回归模型中变量选择方法综述[J].数理统计与管理,2010,29(4):615-627. 被引量:70
  • 4Liang F,Wong W H.Evolutionary Monte Carlo:Applications to Cp Model Sampling and Change Point Problem[J].Statistica Sinica,2000(10).
  • 5李扬,朱建锋,谢邦昌.变量选择方法及其在健康食品市场研究中的应用探究[J].统计与信息论坛,2013,28(10):17-24. 被引量:6
  • 6Clyde M,Ghosh J,Littman M.Bayesian Adaptive Sampling for Variable Selectionand Model Averaging[J].Journal of Computational and Graphical Statistics,2011,20(1).
  • 7Raftery A E,Madigan D,Hoeting J A.Bayesian Model Averaging for Linear Regression Model[J].Journal of the American Statistics Assoiciation,1997,437(92).
  • 8朱钰.线性、非线性与广义线性回归模型[J].统计与信息论坛,1996,11(3):46-49. 被引量:1
  • 9Smith M,Kohn R.Nonparametric Regression Using Baysian Variable Selection[J].Journal of Economics,1996,75(2).
  • 10Barbieri M,Berger J.Optimal Predictive Model Selection[J].The Annals of Statistics,2004,32(3).

二级参考文献22

  • 1王大荣,张忠占.联合广义线性模型中的变量选择[J].统计研究,2007,24(4):37-40. 被引量:2
  • 2Lee Kyeong Eun, Sha N, Dougherty E R, Vannacci M, et al. Gene Selection: a Bayesian Variable Selection Approach[J].Bioinformatics, 2003(1).
  • 3Bowden G J, Dandy G C, Maier H R Input Determination for Neural Network Models in Water Resources Applications. [J]. Journal of Hydrology, 2005 (1).
  • 4Hall A D, Hwang S, Satchell S E. Using Bayesian Variable Selection Methods to Choose Style Factors in Global Stock Return Models[J]. Journal of Banking & Finance, 2002(12).
  • 5Nguyen H S, Skowron A. Quantization of Real Value Attributes[C]. Proc. of the Second International Joint Conference on Information Sciences, 1995.
  • 6Vinterbo S, ohrn A. Minimal Approximate Hitting Sets and Rule Templates[R]. Methods for Construction and Adaptation. NTNU Report, 1999.
  • 7Vinterbo S, obhrn A. Minimal Approximate Hitting Sets and Rule Templates[J]. International Journal of Approximate Reasoning, 2000(2).
  • 8Hasite T. The Elements of Statistical Learning: Data Mining, Inference, and Prediction[M]. 2th ed. Springer,2009.
  • 9Giinther F, Fritsch S. Neuralnet:Training of Neural Networks[J]. The R Journal,2010(1).
  • 10Mozos O M, Stachniss C, Burgard W. Supervised Learning of Places from Range Data Using Adal3oost[C]. Proc. of the IEEE Int. Conf. on Robotics & Automation(ICRA),2005.

共引文献74

同被引文献11

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部