摘要
对多元线性回归问题中的变量选择进行研究,改进现有的贝叶斯自适应抽样(BAS)方法,在实现整体不放回抽样的前提下,局部引进放回抽样的方法,通过数据仿真发现,同样进行贝叶斯模型平均(BMA),改进后的方法预测效果比改进前的BAS预测效果更好。
This paper mainly studies on the variable selection for multiple linear regression model and is to improve the existing Bayesian adaptive sampling method(BAS). Not sampling without replacement all the time but partially adopting sampling with replacement, and we can find, through data simulation, that the predictive effect of improved method is better than former one if Bayesian model averaging(BMA) is equally adopted.
出处
《统计与信息论坛》
CSSCI
北大核心
2015年第8期20-24,共5页
Journal of Statistics and Information
基金
国家自然科学基金项目<气垫调压室体型优化与运行控制研究>(51379064)
关键词
贝叶斯变量选择
贝叶斯模型平均
贝叶斯自适应抽样
放回抽样
Bayesian variable selection
Bayesian model averaging
Bayesian adaptive sampling
sampling with replacement