摘要
本文中提出了一种基于共振滤波和包络小波包分解的鲁棒故障特征提取方法,首先对信号进行共振频带滤波,再对滤波信号的包络进行小波包分解并提取重构子带信号的标准偏差值作为特征向量。该方法考虑了包络信号能充分描述轴承局部故障引起循环冲击的特点,并利用支持向量机进行轴承故障类型自动识别。实验结果表明,该方法能有效地实现故障程度鲁棒的滚动轴承智能诊断,具有较高的诊断速率,效果优于传统滚动轴承诊断方法。
A novel feature extraction is presented to obtain features which are insensitive to fault severity levels. Signals are first filtered by a band-pass filter around their resonance frequency, and then envelops are obtained by the Hilbert transform. Wavelet packet transform are employed to decompose the envelops to a third level followed by calculating the standard deviation of each node signals as fault severity robust features. These features are then input to support vector machines ( SVMs ) to identify fault type. The results verify the effectiveness and quickness of the proposed approach and this method is better than the results of traditional methods for the practical problems.
出处
《机械设计与研究》
CSCD
北大核心
2015年第4期78-82,共5页
Machine Design And Research
基金
国家自然科学基金资助项目(51265010
51205130)
江西省教育厅科技项目(GJJ12318)
江西省自然科学基金项目(20132BAB216029)
江西省研究生创新专项基金项目(YC2014-S244)
关键词
故障诊断
包络信号
小波包分解
支持向量机
fault diagnosis
envelope signal
wavelet packet transform
support vector machine