期刊文献+

一种基于Lévy飞行的细菌觅食优化算法 被引量:7

Bacterial foraging optimization algorithm based on Lévy flight
下载PDF
导出
摘要 分析了细菌觅食优化(BFO)算法的基本原理,为了改善算法局部搜索能力突出而全局搜寻能力欠佳、算法结构复杂等缺点,在BFO算法的复制操作中引入Lévy飞行机制,并将算法的迁徙操作移入趋向操作内部,简化了算法结构,变原来的三层嵌套循环结构为两层循环,提出一种新的基于Lévy飞行的BFO算法——LBFO算法。该算法的复制操作中,保留当前种群中50%的优良细菌个体,然后对余下的个体全部用Lévy飞行进行位置更新,保证了算法全局收敛性的同时又加强了算法的随机搜索能力,有助于保持种群多样性和减少早熟收敛的现象发生。最后将LBFO算法对选取的六个基准测试函数和0-1背包问题进行实验仿真,实验结果表明新提出的LBFO算法不仅收敛速度快,而且优化精度高,运行速度也得到很大程度的提升。 This paper analyzed the principle of the bacterial foraging optimization (BFO) algorithm. It improved the standard BFO algorithm to mainly overcame its poor global search capability and complex structure. And it introduced Levy flight into re- production operation and moved the operation of elimination and dispersal to chemotaxis operation to simplify the algorithm structure, and translated the triple loops into dual loops. This paper proposed a new BFO (LBFO) algorithm based on Levy flight mechanism. In the reproduction operation, the algorithm reserved half of the elite bacterial, and updated the other by Levy flight. It guaranteed not only the global convergence but also the random search ability of LBFO algorithm, thus help to keep the diversity of the bacterial population and reduce the situation of premature convergence. Finally, the experimental results on 6 Benchmark function optimization problems and 0-1 knapsack problems show that the improved LBFO algorithm has the higher searching performance and convergence rate than the standard BFO algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2015年第9期2601-2605,共5页 Application Research of Computers
基金 国家自然科学基金青年基金资助项目(61100164 61173190) 国家教育部留学回国人员科研启动基金资助项目(教外司留[2012]1707号) 中央高校基本科研业务费专项基金资助项目(GK201402035 GK201302025 GK200902018)
关键词 细菌觅食优化(BFO) Levy飞行 趋向性操作 复制操作 迁徙操作 bacterial foraging optimization(BFO) Levy flight chemotaxis operation reproduction operation elimination and dispersal operation
  • 相关文献

参考文献24

  • 1Passino K M.Biomimicry of bacterial foraging for distributed optimization and control[J].IEEE Control Systems Magazine,2002,22(3):52-67.
  • 2Datta T,Misra I S,Mangaraj B B,et al.Improved adaptive bacteria foraging algorithm in optimization of antenna array for faster convergence[J].Progress in Electromagnetics Research C,2008,1:143-157.
  • 3Chen Hanning,Zhu Yulong,Hu Kuyuan.Self-adaptation in bacterial foraging optimization algorithm[C]//Proc of the 3rd International Conference on Intelligent System and Knowledge Engineering.2008:1026-1031.
  • 4Das S,Biswas A,Dasgupta S,et al.Bcterial foraging optimization algorithm:theoretical foundations,analysis,and applications[C]//Foundations of Computational Intelligence.Berlin:Springer,2009:23-55.
  • 5蒲兴成,赵红全,张毅.基于改进细菌趋化步长的移动机器人路径规划方法研究[J].山东科技大学学报(自然科学版),2012,31(4):56-62. 被引量:4
  • 6姜建国,周佳薇,郑迎春,王涛.一种自适应细菌觅食优化算法[J].西安电子科技大学学报,2015,42(1):75-81. 被引量:17
  • 7Niu Ben,Wang Hong,Wang Jingwen,et al.Multi-objective bacteria foraging optimization[J].Neurocomputing,2013,116(9):336-345.
  • 8陈东宁,张国峰,姚成玉,张瑞星.细菌群觅食优化算法及PID参数优化应用[J].中国机械工程,2014,25(1):59-64. 被引量:10
  • 9Yang Xinshe,Deb S.Cukoo search via Lévy flights[C]//Proc of Word Congress on Nature & Biologically Inspired Computing.Piscataway:IEEE Press,2009:210-214.
  • 10Viswanathan G M,Afanasyev V,Buldyrev S V,et al.Lévy flight search patterns of wandering albatrosses[J].Nature,1996,381(6581):413-415.

二级参考文献119

共引文献178

同被引文献93

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部