期刊文献+

基于改进型粒子群算法的有源噪声控制 被引量:3

Active noise control based on modified particle swarm optimization algorithm
下载PDF
导出
摘要 为提高基于粒子群算法的有源噪声控制(ANC)系统的性能,提出一种改进型重新初始化粒子群算法(MRPSO)。该算法充分利用粒子个体最优信息,并动态改变其惯性权重,从而增强了种群的多样性,提高了算法的收敛速度和全局优化能力。针对ANC系统的时变特性,该算法通过重新初始化粒子以应对声通道的突变。以对误差信号的逐个采样为基础,介绍了基于MRPSO算法的有源噪声控制方法。该方法无须估计次级声通道,但可以有效降低噪声信号,提高信噪比。通过与已有算法的比较,结果表明MRPSO算法在全局收敛速度和优化精度上有显著的提升,同时,MRPSO算法应对声通道突变的能力也优于其他两种算法。 To enhance the performance of the active noise control (ANC) system based on particle swarm optimization algo- rithm,this paper proposed a modified reinitialized particle swarm optimization (MRPSO) algorithm. By taking full advantage of individual optimal information of all particles and dynamically changing the inertia weight, it enhanced the diversity of popula- tion and improved the convergence speed and global optimization ability. Considering the tirae-varying characteristics of ANC system,it reinitialized the particle to deal with the mutations of acoustic path. A MRPSO-based ANC method,worked on a sam- ple-by-sample principle without estimating the secondary path, could reduce the noise and improve the SNR. Simulation results show that the MRPSO algorithm can converge faster and more accurately, while it also has better ability to suit to the mutations of acoustic path than the other two algorithms.
出处 《计算机应用研究》 CSCD 北大核心 2015年第9期2622-2625,2642,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61201307 61371045) 山东省自然科学基金资助项目(ZR2011FM005) 哈尔滨工业大学重点实验室开放基金资助项目(HIT.KLOF.2012.078)
关键词 有源噪声控制 粒子群优化 次级声通道 active noise control particle swarm optimization(PSO) secondary path
  • 相关文献

参考文献13

  • 1George N V,Panda G.Advances in active noise control:a survey,with emphasis on recent nonlinear techniques[J].Signal Processing,2013,93(2):363-377.
  • 2Chang Chengyuan,Chen Dengrui.Active noise cancellation without secondary path identification by using an adaptive genetic algorithm[J].IEEE Trans on Instrumentation and Measurement,2010,59(9):2315-2327.
  • 3Ahmed S,Akhtar M T,Zhang Xi.Robust auxiliary-noise- power scheduling in active noise control systems with online secondary path modeling[J].IEEE Trans on Audio,Speech,and Language Processing,2013,21(4):749-761.
  • 4Rout N K,Das D P,Panda G.Particle swarm optimization based active noise control algorithm without secondary path identification[J].IEEE Trans on Instrumentation and Measurement,2012,61(2):554-563.
  • 5Russo F,Sicuranza G L.Accuracy and performance evaluation in the genetic optimization of nonlinear systems for active noise control[J].IEEE Trans on Instrumentation and Measurement,2007,56(4):1443-1450.
  • 6Liu Lili,Yang Shengxiang,Wang Dingwei.Particle swarm optimization with composite particles in dynamic environments[J].IEEE Trans on Systems,Man and Cybernetics,Part B,2010,40(6):1634-1648.
  • 7Wang Lin,Yang Bo,Chen Yuehui.Improving particle swarm optimization using multi-layer searching strategy[J].Information Sciences,2014,274:70-94.
  • 8Nouaouria N,Boukadoum M.Improved global-best particle swarm optimization algorithm with mixed-attribute data classification capability[J].Applied Soft Computing,2014,21:554-567.
  • 9George N V,Panda G.A robust evolutionary feedforward active noise control system using wilcoxon norm and particle swarm optimization algorithm[J].Expert Systems with Applications,2012,39(8):7574-7580.
  • 10George N V,Panda G.A particle-swarm-optimization-based decentralized nonlinear active noise control system[J].IEEE Trans on Instrumentation and Measurement,2012,61(12):3378-3386.

二级参考文献17

  • 1李剑波,王东风,付萍,韩璞.基于改进粒子群算法的主汽温系统PID参数优化[J].华北电力大学学报(自然科学版),2005,32(4):26-30. 被引量:17
  • 2苏晋荣,李兵义,王晓凯.一种利用种群平均信息的粒子群优化算法[J].计算机工程与应用,2007,43(10):58-59. 被引量:18
  • 3KAYIKCI Y. A conceptual model for intermodal freight logistics centre location decisions[J]. Procedia-Social and Behavioral Sciences, 2010,2(3) :6297-6311.
  • 4KUO M S. Optimal location selection for an intemational distribution center by using a new hybrid method[J]. Expert Systems with Applications ,2011,38(6) :7208-7221.
  • 5XU Jiu-ping, YAO Li-ming, ZHAO Xiao-dan. A multi-objective chance-constrained network optimal model with random fuzzy coefficients and its application to logistics distribution center location problem [ J ]. Fuzzy Optimization and Decision Making,2011,10 ( 3 ) : 255- 285.
  • 6YANG Li-xing, JI Xiao-yu, GAO Zi-you. Logistics distribution centers location problem and algorithm under fuzzy environment [ J ]. Journal of Computational and Applied Mathematics, 2007,208 ( 2 ) : 303- 315.
  • 7SUN Hui-jun, GAO Zi-you, WU Jian-jun. A bi-level programming model and solution algorithm for the location of logistics distribution centers [ J ]. Applied Mathematical Modelling, 2008,32 (4) : 610- 616.
  • 8LI Ye, LIU Xiao-dong, CHEN Yan. Selection of logistics center location using axiomatic fuzzy set and TOPSIS methodology in logistics management [ J ]. Expert Systems with Applications,2011,38 (6) : 7901-7908.
  • 9LIU Sen, CHAN F T S, CHUNG S H. A study of distribution center location based on the rough sets and interactive multi-objective fuzzy decision theory[J]. Robotics and Computer-Integrated Manufaetu- rinfl,2011,27(2) :426-433.
  • 10KENNEDY J, EBERHART R C. Particle swarm optimization[ C ]// Proc of IEEE International Conference on Neural Networks. 1995: 1942-1948.

共引文献20

同被引文献28

引证文献3

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部