期刊文献+

基于ARIMA与WASDN加权组合的时间序列预测 被引量:6

Time series forecasting based on weighted combination of ARIMA and WASDN
下载PDF
导出
摘要 为了提高时间序列预测方法的预测精度以及增强其适用性,提出一种ARIMA-WASDN加权组合方法。该方法同时使用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型与配备权值及结构确定(weights and structure determination,WASD)算法的幂激励前向神经网络(WASDN)对时间序列进行建模、测试以及预测。根据测试结果,将ARIMA与WASDN进行加权组合。数值实验结果显示,所提出的ARIMA-WASDN加权组合方法的预测精度高于ARIMA或WASDN单独使用时的预测精度,验证了该方法在时间序列预测方面的有效性和优越性。 In order to improve the forecasting accuracy and enhance the applicability of the time series forecasting approach, this paper proposed a novel weighted combination method, namely ARIMA-WASDN method. This method simultaneously exploited the ARIMA model and WASDN ( short for the power-activation feed-forward neuronet equipped with the WASD algo- rithm) to model, test and forecast the time series. According to the results of testing, two models could be combined into one model in a weighted manner for time series forecasting. Numerical experiment results indicate that the ARIMA-WASDN method can improve the accuracy achieved via either of the models used separately, and the results further illustrate the effectiveness and superiority of the proposed ARIMA-WASDN method in terms of time series forecasting.
出处 《计算机应用研究》 CSCD 北大核心 2015年第9期2630-2633,2638,共5页 Application Research of Computers
基金 国家社会科学基金资助项目(13BXW037) 自主系统与网络控制教育部重点实验室开放基金资助项目(2013A07)
关键词 差分自回归移动平均模型 权值与结构确定算法 幂激励前向神经网络 时间序列预测 加权组合 ARIMA model WASD algorithm power-activation feed-forward neuronet time series forecasting weighted combination
  • 相关文献

参考文献21

  • 1Box G E P,Jenkins G.Time series analysis,forecasting and control[M].San Francisco,CA:Holden-Day,1970.
  • 2Bell W,Hillmer S.Issues involved with the seasonal adjustment of economic time series[J].Journal of Business & Economic Statistics,2002,20(1):98-127.
  • 3Luxhoj J T,Riis J O.A hybrid econometric-neural network modeling approach for sales forecasting[J].International Journal of Production Economics,1996,43(2-3):175-192.
  • 4Winters P R.Forecasting sales by exponentially weighted moving averages[J].Management Science,1960,6(3):324-342.
  • 5Sun Shiliang,Zhang Changshui.The selective random subspace predictor for traffic flow forecasting[J].IEEE Trans on Intelligent Transportation Systems,2007,8(2):367-373.
  • 6郭牧,孙占全,潘景山,徐梅.短时交通流预测方法研究[J].计算机应用研究,2008,25(9):2676-2678. 被引量:12
  • 7Bowerman B L,O’connel R T,Koehle A B.Forecasting,time series and regression:an applied approach[M].3rd ed.[S.l.]:South-Western,2004.
  • 8格雷特,李洪成.时间序列预测实践教程[M].北京:清华大学出版社,2012.
  • 9Zhang G P,Qi Min.Neural network forecasting for seasonal and trend time series[J].European Journal Operational Research,2005,160(2):501-514.
  • 10修春波.时间序列一步预测方法[J].计算机应用研究,2010,27(4):1266-1269. 被引量:4

二级参考文献51

共引文献27

同被引文献41

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部