期刊文献+

云环境中基于布谷鸟搜索算法的多目标任务调度方案 被引量:9

Multi-objective task scheduling scheme based on cuckoo search algorithm in cloud environment
下载PDF
导出
摘要 效率往往是任务调度的首要目标,对于数据中心而言,能耗问题也是十分重要的因素。在布谷鸟搜索(cuckoo search,CS)算法的基础上提出了一种多目标任务调度方案——MOCS,以实现云环境下任务调度效率和能耗的Pareto最优。布谷鸟搜索算法是一种启发式算法,利用Lévy flight(莱维飞行)通常能较快地寻找到全局最优解。利用Cloud Sim云仿真平台将所提方案与采用遗传算法的多目标任务调度方案进行对比,仿真实验证明所提方案优于采用遗传算法的方案。 Effectiveness was always the primary goal of task scheduling, for data centers, power consumption was also very important factor. Based on the cuckoo search algorithm, this paper proposed a multi-objective scheduling scheme-MOCS to a- chieve the Pareto optimization between low power consumption and efficiency of scheduling in cloud environment. Cuckoo search algorithm was a heuristic algorithm and could find global optima quickly. It used the CloudSim platfoim to compare the proposed scheme with the scheme employing genetic algorithms. Simulation results show that the proposed scheme outperforms the scheme employing genetic algorithms.
作者 吴国芳
出处 《计算机应用研究》 CSCD 北大核心 2015年第9期2674-2677,共4页 Application Research of Computers
基金 浙江省教育厅高等学校访问学者专业发展项目(FX2013236) 浙江省教育厅科研项目(Y201225529)
关键词 云计算 布谷鸟搜索 多目标优化 任务调度 莱维飞行 cloud computing cuckoo search multi-objective optimization task scheduling Levy flight
  • 相关文献

参考文献9

  • 1Yang Xinshe,Suash D.Cuckoo search via Lévy flights[C]//Proc of World Congress on Nature & Biologically Inspired Computing.[S.l.]:IEEE Press,2009.
  • 2Calheiros R N,Ranjan R,Beloglazov A,et al.CloudSim:a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J].Software:Practice and Experience,2011,41(1):23-50.
  • 3Renaud H,Pierre S.A support-based algorithm for the bi-objective Pareto constraint[C]//Proc of AAAI.2014:2674-2679.
  • 4Xu Yuming,Li Kenli,Hu Jingtong,et al.A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues[J].Information Science,2014,270:255-287.
  • 5Sadasivam G S,Selvaraj D.A novel parallel hybrid PSO-GA using MapReduce to schedule jobs in Hadoop data grids[C]//Proc of NaBIC.2010:377-382.
  • 6Gandomi A H,Yang X S,Alavi A H.Cuckoo search algorithm:a metaheuristic approach to solve structural optimization problems[J].Engineering with Computers,2013,29(1):17-35.
  • 7Jamil M,Zepernick H J,Yang Xinshe.Lévy flight based cuckoo search algorithm for synthesizing cross-ambiguity functions[C]//Proc of Military Communications Conference.San Diego:IEEE Press,2013.
  • 8Yang Xinshe,Deb S.Multiobjective cuckoo search for design optimization[J].Computers & Operations Research,2013,40(6):1616-1624.
  • 9Kumar R,Sahoo G.Cloud computing simulation using CloudSim[J].International Journal of Engineering Trends and Technology,2014,8(2):82-86.

同被引文献59

  • 1袁静波,丁顺利,鞠九滨.基于负载的任务运行时间预报模型[J].计算机工程,2006,32(7):123-125. 被引量:2
  • 2田绍亮,左明,吴绍伟.一种改进的基于动态反馈的负载均衡算法[J].计算机工程与设计,2007,28(3):572-573. 被引量:41
  • 3刘晓茜.云计算数据中心结构及其调度机制研究[D].合肥:中国科学技术大学,2011.
  • 4Mahdavi M,Fesanghary M,Damangir E. An improved har-mony search algorithm for solving optimization problems[ J].Applied Mathematics and Computation, 2007, 188 ( 2 ):1567 -1579.
  • 5Tang M,Pan S. A hybrid genetic algorithm for the energy -efficient virtual machine placement problem in data centers[J]. Neural Processing Letters? 2014,41 (2) :211 -221.
  • 6Beloglazov A,Abawajy J,Buyya R. Energy-aware resource al-location heuristics for efficient management of data centersfor cloud computing [ J ]. Future Generation Computer Sys-tems,2012 ,28( 5 ) :755 -768.
  • 7Calheiros R N, Ranjan R, Beloglazov A, et ai. CloudSim: atoolkit for modeling and simulation of cloud computing envi-ronments and evaluation of resource provisioning algorithms[J]. Software Practice & Experience ,2011,41 (1 ) :23 - 50.
  • 8Andrew J Younge,Gregor Von Laszewski,Wang Lizhe,et al.Efficient resource management for cloud computing environ-ments [C ] . Noven : International Conference on Green Compu-ting,2010.
  • 9Calheiros R N, Ranjan R, Beloglazov A, et al. CloudSim: atoolkit for modeling and simulation of cloud computing envi-ronments and evaluation of resource provisioning algorithms[J]. Software Practice & Experience,2010,41 (1 ) :23 - 50.
  • 10庞晓平,陈进,王家序.采用通用膜厚方程的动压径向轴承形状优化[J].西安交通大学学报,2009,43(1):57-61. 被引量:5

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部