期刊文献+

基于线性回归的适应性排名算法研究 被引量:4

Adaptive ranking algorithm based on linear regression
下载PDF
导出
摘要 根据已有的查询历史记录对排名模型进行自适应调整可以更好地实现检索结果的个性化。为了提高个性化检索的准确性,提出了一种基于线性回归的适应性排名算法。基于线性回归技术提出了一种适应性排名通用框架,该自适应框架通过调整参数来描述不同用户的查询偏好,进而实现排名的个性化,然后将改进的Rank SVM算法应用于该框架,并提出了一种适应性Rank SVM算法。最后,通过真实数据集实验验证了提出算法的有效性,能够明显提高排名准确率。 Adaptation of ranking model according to the query history could give a better personalized query results. In order to improve the precision of information retrieval, this paper proposed a linear regression based ranking algorithm. Firstly, it proposed an adaptive general ranking framework based on linear regression. Secondly, by introducing the RankSVM algorithm into the proposed framework, proposed an adaptive RankSVM algorithm. Finally, it validated the efficiency of the proposed al- gorithm using real dataset experiments.
作者 王胜
出处 《计算机应用研究》 CSCD 北大核心 2015年第9期2684-2686,共3页 Application Research of Computers
基金 安徽省高校优秀青年人才基金重点资助项目(2013SQRL106ZD)
关键词 信息检索 线性回归 排名 准确率 RankSVM算法 information retrieval linear regression ranking precision RankSVM
  • 相关文献

参考文献18

  • 1Radlinski F,Dumais S.Improving personalized Web search using result diversification[C]//Proc of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.[S.l.]:ACM Press,2006:691-692.
  • 2Speretta M,Gauch S.Personalized search based on user search histories Web intelligence[C]//Proc of IEEE/WIC/ACM International Conference on Web Intelligence.2005:622-628.
  • 3Jeh G,Widom J.Scaling personalized Web search[C]//Proc of the 12th International Conference on World Wide Web.2013:271-279.
  • 4Stamou S,Ntoulas A.Search personalization through query and page topical analysis[J].User Modeling and User-adapted Interaction,2009,19(1-2):5-33.
  • 5Dou Zhicheng,Song Ruihua,Wen Jirong.A large-scale evaluation and analysis of personalized search strategies[C]//Proc of WWW.New York:ACM Press,2007:581-590.
  • 6Joachims T,Granka L,Pan B,et al.Accurately interpreting clickthrough data as implicit feedback[C]//Proc of SIGIR.2005:154-161.
  • 7Agichtein E,Brill E,Dumai S,et al.Learning user interaction models for predicting Web search result preferences[C]//Proc ofSIGIR.New York:ACM Press,2006:3-10.
  • 8Tan Bin,Shen Xuehua,Zhai Chengxiang.Mining long-term search history to improve search accuracy[C]//Proc ofKDD.2006:718-723.
  • 9Sontag D,Collins-thompson K,Bennett P N,et al.Probabilistic models for personalizing Web search[C]//Proc ofWSDM.2012:433-442.
  • 10Teevan J,Liebling D,Ravichandran G G.Understanding and predicting personal navigation[C]//Proc ofWSDM.2011:85-94.

二级参考文献26

  • 1冉丽,何毅舟,许龙飞.基于Web结构挖掘的搜索引擎作弊检测方法[J].计算机应用,2004,24(10):158-160. 被引量:4
  • 2杨彬,康慕宁.基于概念的权重PageRank改进算法[J].情报杂志,2006,25(11):70-72. 被引量:10
  • 3原福永,张园园.基于链接分析的相关排序方法的研究和改进[J].计算机工程与设计,2007,28(7):1630-1631. 被引量:11
  • 4Young A L, Quan-haase A. Information revelation and Internet privacy concerns on social network sites : a case study of facebook. Porc of the 4th International Conference on Communities and Technologies. New York : ACM Press ,2009 ; 265-274.
  • 5Li Yungming, Hsiao Hanwen. Recommender service for social net-work based application. Proc of the 11th International Conference on Electronic Commerce. New York: ACM Press,2009; 378-381.
  • 6李勇军 代亚非.社交网络[J].中国计算机学会通讯,2010,6(3):47-51.
  • 7Brin S, Page L. The pagerank citation ranking: Bring order to the web [R]. Technical Report, Stanford, 1999: 1-15.
  • 8Kleinberg J M. Authoritativesouces in a hyperlinked environment[J]. Journal of the Association for Computing Machinery, 1999, 46(5) : 604-632.
  • 9百度搜索帮助中心一网页搜索帮助一站长FAO[B/OL].www.baidu.corn/search/guide.html,2010-01-13.
  • 10Gyongyi Z, Garcia-Molina [C]//In: 1t International Information Retrieval on Chiba, Japan, 2005:1-8. H. Web spam taxonomy Workshop on Adversarial the Web (AIR Web),.

共引文献5

同被引文献31

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部