摘要
针对传统推荐方法在短文本处理方面的不足,提出一种基于用户兴趣模型与会话抽取算法的微博推荐方法。该方法应用基于归一化割加权NMF的微博用户兴趣模型获取用户—主题矩阵,产生用户感兴趣的微博主题,结合基于Single-Pass聚类模型的会话在线抽取算法SPFC(single-pass based on frequency and correlation)获取微博的会话队列,并与用户感兴趣的微博主题进行相似度计算,最后得到实时的微博推荐结果。实验表明,此方法能有效地进行微博推荐。
Aiming at the deficiency of conventional recommendation method in short text message processing, this paper pro- posed a microblog recommendation method based on user interest model and conversation extraction. First, it applied a Ncut weighted non-negative matrix factorization (Ncut weighted NMF)to obtain user-interest matrix. And then used Single-Pass clustering based on frequency and correlation for conversation extraction to obtain mieroblog conversation. Experiments show that this method can effectively cluster micro-blogs and support micro-blog recommendation.
出处
《计算机应用研究》
CSCD
北大核心
2015年第9期2724-2728,共5页
Application Research of Computers
基金
国家自然科学基金资助项目(61163039
61363058)
甘肃省教育厅资助项目(2013A-016
2013B-007)
甘肃省青年科技基金计划项目(145RJYA259)
中国科学院计算技术研究所智能信息处理重点实验室开放基金资助项目(IIP2014-4)
关键词
用户兴趣模型
会话抽取
归一化割
非负矩阵分解
微博推荐
user interest model
conversation extraction
normalized cut
nonnegative matrix factorization
microblog recommendation