期刊文献+

基于白化PCA图像重构的特征补偿人脸识别新方法 被引量:8

Novel feature compensation method for face recognition based on whitening PCA image reconstruction
下载PDF
导出
摘要 针对基于主成分分析(principal component analysis,PCA)方法在特征提取过程中丢弃高阶统计信息的缺陷,提出了一种基于图像重构的特征补偿人脸识别算法。首先利用白化PCA方法提取原始图像特征,对图像进行重构并计算残差图像;然后对残差图像进行白化PCA特征提取,并将其作为第一次提取特征的有效补偿以得到新的特征;最后用最近邻分类器进行识别分类。在ORL、YALE、XM2VTS和AR人脸数据库上的实验结果验证了算法的有效性。 According to the defect of PCA method which discards high-order statistical information in the process of feature ex- traction, this paper proposed a new feature compensation method for face recognition based on image reconstruction. Firstly, it extracted features from the original images using whitening PCA method, and it reconstructed the images and calculated the re- sidual images. Secondly,it extracted features from the residual images using whitening PCA method, these features were effec- tive compensation for previously obtained features to get the new features. Finally ,it used nearest neighbor classifier for classifi- cation. Experiments on ORL, YALE, XM2VTS and AR face databases demonstrate the effectiveness of the proposed algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2015年第9期2853-2856,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61103128)
关键词 人脸识别 主成分分析 图像重构 特征提取 特征补偿 face recognition principal component analysis (PCA) image reconstruction feature extraction feature com- pensation
  • 相关文献

参考文献16

  • 1Yang M H,Kriegman D J,Ahuja N.Detecting faces in images:a survey[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(1):34-58.
  • 2Kirby M,Sirovich L.Application of the Karhunen-Loeve procedure for the characterization of human faces[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1990,12(1):102-108.[3]Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 3Yang Jian,Yang Jingyu.From image vector to matrix:a straightforward image projection technique-IMPCA vs.PCA[J].Pattern Recognition,2002,35(9):1997-1999.
  • 4Yang Jian,Zhang D,Frangi A F,et al.Two-dimensional PCA:a new approach to appearance-based face representation and recognition[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2004,26(1):131-137.
  • 5Jaha E S,Ghouti L.Color face recognition using quaternion PCA[C]//Proc of the 4th International Conference on Imaging for Crime Detection and Prevention.2011:1-6.
  • 6Cwak N.Principal component analysis based on L1-norm maximization[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2008,30(9):1672-1680.
  • 7梁志贞,李勇,夏士雄,周勇.Lp范数约束下的最大化L1范数主成分分析[J].模式识别与人工智能,2013,26(2):211-218. 被引量:3
  • 8Candes E J,Li Xiaodong,Ma Yi,et al.Robust principal component analysis?[J].Journal of the ACM,2011,58(3):1-37.
  • 9Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs.Fisherfaces:recognition using class specific linear projection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 10Scholkopf B,Smol A,Muller K.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319.

二级参考文献28

  • 1Jolliffe I T. Principal Component Analysis. 2nd Edition. New York,USA : Springer-Vedag, 2002.
  • 2Bacvini A, Besse P, de Falguerelles A. A LI-Norm PCA and a Heuristic Approach//Proc of the International Conference on Ordinal and Symbolic Data Analysis. Paris, France, 1995:359-368.
  • 3Ding C, Zhou Ding, He Xiaofeng, et al. R1-PCA: Rotational Invariant L1-Norm Principal Component Analysis for Robust Subapace Factorintion st/Proc of the 23rd International Conference on Machine Learning. Pittsburgh, USA, 2006:281-288.
  • 4Nojun K. Principal Component Analysis Based on L1-Norm Maximization. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(9) : 1672-1680.
  • 5Liang Zhiaheng, Li Yaufu. A Regulatization Framework for Robust Dimensionality Reduction with Applications to Image Reconstruction and Feature Extraction. Pattern Recognition, 2010, 43(4) : 1269-1281.
  • 6Xu Huan, Caramanis C, Mannor S. Principal Component Analysis with Contaminated Data: The High-Dimensional Case// Proc of the 23rd Annual Coderence on Learning Theory. Haifa, Israel, 2010:490-502.
  • 7He Ran, Hu Baogang, Zbeng Weishi, et al. Robust Principal Component Analysis Based on Maximum Correntropy Criterion. IEEE Trans on Image Preceding, 2011,20(6) : 1485-1494.
  • 8Moghaddam B, Weiss Y, Avidan S. Spectral Bounds for Sparse PCA : Exact and Greedy Algorithms//Weiss Y, Scholkopf B, Platt J, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2005, XV: 915-922.
  • 9Candes E J, Li X, Ma Y, et al. Robust Principal Component Analysis? Journal of ACM, 2009, 58( 1 ) : 1-37.
  • 10Horst R, Paradols P M, Thoai N V. Introduction to Global Optimization. 2nd Edition. Dordrecht, The Netherlands: Kluwer Academic Publisher, 2000.

共引文献2

同被引文献48

  • 1朱世交,张南华.一种基于曲波变换的手势特征提取新方法[J].计算机工程与应用,2006,42(33):50-52. 被引量:1
  • 2贾西贝.基于曲波变换的人脸识别算法研究[D].哈尔滨:哈尔滨工程大学,2011.
  • 3田晓亮.基于Gabor小波变换和子空间的人脸识别技术研究[D].太原:太原理工大学,2010.
  • 4赵阳.曲波变换在人脸识别中的应用[D].西安:西安理工大学,2011.
  • 5LIN J, LI J P, JI M. Robust face recognition by wave- let features and model adaptation [ C ]//Wavelet analy- sis and pattern recognition, 2007. Piscataway, N J: IEEE Computer Society, 2007 : 1638 - 1643.
  • 6YE J H, HU D, XIA G M, et al. An advanced BPNN face recognition based on curvelet transform and 2DPCA[ C]//Computer science & education, 2013. Piscataway, NJ: IEEE computer society, 2013:1019 - 1022.
  • 7MA H, HU F S. The study of human face recognition based curvelet transform and 2DPCA[ C ]//Information science and engineering, 2010. Piscataway, N J: IEEE computer society, 2010 : 5512 - 5515.
  • 8MOHAMMED A A, WU Q M J, SID-AHMED M A. Systems application of bidirectional two-dimensional principal component analysis to curvelet feature based face recognition [ C ]//Systems, man and cybernetics, 2009.
  • 9Piscataway, N J: IEEE computer society, 2009 : 4124 -4130. CANDES E, DEMANET L, DONOHO D, et al. Fast discrete curvelet transforms [ J]. Muhiscale modeling & simulation, 2006, 5(3): 861-899.
  • 10YANG J, ZHANG D. Two-dimensional PCA: a new approach to appearance-based face representation and recognition [J]. IIEEE Trans. PAMI, 2004, 26( 1 ): 131 - 137.

引证文献8

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部