期刊文献+

刚体航天器大角度姿态机动控制算法 被引量:1

Large Angle Attitude Maneuver Control Algorithm for Rigid Spacecraft
下载PDF
导出
摘要 针对刚体航天器在参数不确定及环境扰动情况下的大角度姿态机动问题,提出一种自适应离散变结构姿态控制算法.建立包含航天器姿态运动学及动力学的仿射模型,并精确反馈线性化解耦;对得到的各线性动态方程离散化处理,由离散指数趋近律推导了参数化的离散变结构姿态控制律.最后基于Lyapunov稳定性理论设计了控制参数的自适应更新律,有效克服了模型中的各时变项及干扰项影响.仿真结果表明,该算法可有效减小干扰引起的姿态指令角跟踪偏差,确保了大角度姿态机动控制的精确性与鲁棒性,并且消除了常规变结构控制的抖振现象. An adaptive discrete-time variable structure control algorithm is proposed for large angle atti- tude maneuver of rigid spacecraft in the presence of parametric uncertainty and external disturbances. The affine system including attitude kinematics and dynamics equations is modeled and decoupled by in- put-output feedback linearization. Then the linear dynamic equations are diseretized and the discrete-time variable structure control law is obtained via the exponential approach law. Finally, the parametric adap- tation law is designed based on Lyapunov stability theory to overcome multiple time-varying and disturb- ance terms in models. The simulation results indicate that the proposed algorithm can decrease the atti- tude tracking deviations caused by the parametric perturbations and external disturbances effectively. In addition, the system ensures the accuracy and robustness of the large angle attitude maneuver and elimi- nates the conventional control chattering.
出处 《空间控制技术与应用》 CSCD 北大核心 2015年第4期14-19,共6页 Aerospace Control and Application
基金 国家高技术研究发展计划(863)资助项目(2012AA120605)
关键词 刚体航天器 大角度机动 姿态解耦控制 离散变结构控制 rigid spacecraft large angle maneuver attitude decoupling control discrete-time variablestructure control
  • 相关文献

参考文献11

  • 1El G A. Optimal control of a rigid spacecraft pro- grammed motion without angular vcelocity measurements [ J]. European Journal of Mechanics, 2006,25 : 854- 866.
  • 2YAN H. Dynamics and real-time optimal control of sat- ellite attitude and satellite formation systems [ D]. Tex- as: Agricultural and Mechanical University, 2006.
  • 3PRAJNA S. Nonlinear H~ control and its application to rigid spacecraft [ C ]//Proceedings of the Asian Control Conference. Istanbul:Asian Control Association, 2004 :104-113.
  • 4ZHANG Q, WU F. Nonlinear I-l= control design with axisymmetric spacecraft control [ J ]. Journal of Guid- ance, Control and Dynamics, 2009,32 ( 3 ) :850-858.
  • 5唐超颖,沈春林.逆系统方法在航天器姿态控制系统中的应用[J].航天控制,2003,21(1):32-36. 被引量:6
  • 6BENASKEUR A R, DESBIENS A. Backstepping-based adaptive PID [ J]. IEE Proceedings-Control Theory and Application, 2002,149 ( 1 ) :54-59.
  • 7KRISHNAKUMAR K, GONSALVES P, SATYADAS A. Hybrid fuzzy logic flight controller synthesis via pilot modeling [ J ]. Journal of Guidance, Control and Dynam- ics, 1995,18(5) :1098-1105.
  • 8陈涛,胡超,黄文虎.航天器姿态调整时的变结构控制与振动抑制方法[J].宇航学报,2007,28(5):1199-1204. 被引量:6
  • 9VADALI S R. Variable-structure control of spacecraft large angle maneuver[ J]. Journal of Guidance, Control and Dynamics, 1986,9 ( 3 ) :235-239.
  • 10GOEREE B B, FASSE E D. Sliding mode attitude con- trol of a small satellite for ground tracking maneuvers [ C]//Proceedings of the American Control Conference. Mississippi: The American Automatic Control Council, 2000 : 1134-1138.

二级参考文献9

  • 1[3]Vadali S R.Variable structure control of spacecraft large attitude maneuvers[J].J.Guidance Control Dynam,1986,9(3):235-239
  • 2[4]Zeng Y,Araujo A D,Singh S N.Output feedback variable structure adaptive control of a flexible spacecraft[J].Acta Astronautica 1999,44(1):11-22
  • 3[5]David G,Wilson,Gregory P,Starr.Vibration suppression of a single flexible link[J].SPIE,1996,2717:608-618
  • 4[6]Allen M,Bernelii-Zazzera F,Scattolini R.Sliding mode control of a large flexible space structure[J].Control Engineering Practice,2000(8):861-871
  • 5[7]Hyochoong Bang,Cheol-Keun Ha,Jin Hyoung Kim.Flexible spacecraft attitude maneuver by application of sliding mode control[J].Acta astronautica,2005,57:841-850
  • 6[8]Ge S S,Lee T H,Zhu G,Hong F.Variable structure control of a distributed-Parameter flexible beam[J].Journal of Robotic System,2001,18(1):17-27
  • 7[11]Carsten Scherer,Pascal Gahinet,Mahmoud Chilaii.Multiobjective output-feedback control via LMI optimization[J].IEEE Transactions on Automatic Control,1997,42(7):896-911
  • 8黄显林,王海斌,尹航,胡恒章.空间飞行器的非线性变结构控制[J].哈尔滨工业大学学报,1998,30(5):42-44. 被引量:4
  • 9高坚,贺昌政.逆系统方法在刚体动力学中的应用──研究带2个陀螺的刚体运动的渐进跟踪问题[J].沈阳化工学院学报,2000,14(2):148-151. 被引量:2

共引文献10

同被引文献6

  • 1Kang W. Nonlinear H∞ control and its app- lication torigid spacecraft[J]. Automatic Control IEEE Transactionson, 1995, 40(7): 1281-1285.
  • 2Zhang Q, Wu F. Nonlinear H∞ control design withaxisymmetric spacecraft control[J]. Jou-rnal of Guidance,Control and Dynamics, 2009, 32(3): 850.
  • 3EI G A. Optimal control of a rigid spacecraft programmedmotion without angular vcelocity measurements[J].European Journal of Mechanics, 2006, 25: 854-866.
  • 4Krishnakumar K, Gonsalves P, Satyadas A, et al. Hybridfuzzy logic flight controller synthesis via pilotmodeling[J]. Journal of Guidance Control & Dynamics,2015, 18(5): 1098-1105.
  • 5Ahmed J, Coppola V T, Bernstein D S. AdaptiveAsymptotic Tracking of Spacecraft Attitude Motion withInertia Matrix Identification[J]. Journal of GuidanceControl & Dynamics, 1998, 21(5): 684-691.
  • 6Prockop D J, Juva K. Simulation and Optimization ofElectro-Hydraulic Position Servo System Based on theAMESim/Matlab[C]// International Conference onComputational and Information Sciences. IEEE ComputerSociety, 2013: 1792-1795.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部