期刊文献+

基于Geant4的三维半导体器件单粒子效应仿真 被引量:1

Simulation of the Single Event Effect in 3D Semiconductor Devices Based on Geant4
下载PDF
导出
摘要 在空间中,辐射粒子入射半导体器件,会在器件中淀积电荷。这些电荷被器件的敏感区域收集,造成存储器件(如静态随机存储器(SRAM))逻辑状态发生变化,产生单粒子翻转(SEU)效应。蒙特卡洛工具——Geant4能够针对上述物理过程进行计算机数值模拟,可以用于抗辐射器件的性能评估与优化。几何描述标示语言(GDML)能够在Geant4环境下对器件模型进行描述。通过使用GDML建立三维的器件结构模型,并使用Geant4进行不同能量质子入射三维器件模型的仿真。实验结果表明,在三维器件仿真中低能质子要比高能质子更容易引起器件的单粒子翻转效应。 In the space, excessive charges are generated and deposited into the devices when an energetic ion strikes towards the semiconductor devices, which are collected at the sensitive regions. This may change the logic states in circuits such as static random access memory (SRAM) , and generate sin- gle event upset (SEU) effect. The Geant4 is a very useful Mont Carlo tool to simulate the nuclear process above. Geant4 can be used for performance evaluation and optimization of radiation devices. The geometry description markup language (GDML) can be used to describe the device model in Geant4. The GDML was used to construct the 3D geometry model and the 3D geometry model with different pro- tons energies irradiation was simulated. The results show that the proton with lower energy is easier to cause the SEU effect than the proton with the higher energy.
出处 《半导体技术》 CAS CSCD 北大核心 2015年第8期592-595,625,共5页 Semiconductor Technology
基金 国家自然科学基金资助项目(11179003 61176095)
关键词 半导体器件 单粒子翻转(SEU)效应 三维模型 GEANT4 线性能量转移(LET) semiconductor device single event upset (SEU) effect 3D model Geant4 linear energy transfer (LET)
  • 相关文献

参考文献9

  • 1WALLMARK J T, MARCUS S M. Minimum size and maximum packing density of nonredundant semiconductor devices [J]. Proceedings of the IRE, 1962, 50 (3) : 286- 298.
  • 2BINDER D, SMITH E C, HOLMAN A B. Satellite anomalies from galactic cosmic rays [ J ]. IEEE Transac- tions on Nuclear Science, 1975, 22 (6) : 2675-2680.
  • 3王丽君.空间电子学的单粒子效应[J].空间电子技术,1998(4):1-5. 被引量:5
  • 4INGUIMBERT C, DUZELLIER S. SEU rate calculation with GEANT4 (comparison with CREME 86) [J]. IEEE Transactions on Nuclear Science, 2004, 51 (5): 2805-2810.
  • 5CHYTRACEK R, MCCORMICK J, POKORSKI W, et al. Geometry description markup language for physics simulation and analysis applications [ J]. IEEE Transac- tions on Nuclear Science, 2006, 53 (5) : 2892-2896.
  • 6TUROWSKI M, FEDOSEYEV A, RAMAN A, et al. Single event upset modeling with nuclear reactions in nanoscale electronics [C] //Proceedings of the 15th In- ternational Conference on Mixed Design of Integrated Cir- cuits and Systems. Poznan, Poland, 2008: 443-448.
  • 7HUANG P C, CHEN S M, CHEN J J, et al. Single- event pulse broadening after narrowing effect in nano- COMS logic circuits [ J ] and Materials Reliability, IEEE Transactions on Device 2014, 14 (3): 849-856.
  • 8Stopping power and range tables for protons [ EB/OLI. [ 2014- 11-25 ]. http: //physics. nist. gov/PhysRefData/ Star/Text/PSTAR-t. html.
  • 9WARREN K M, WELLER R A, MENDENHALL M H, et al. The contribution of nuclear reactions to heavy ion single event upset cross-section measurements in a high- density SEU hardened SRAM [ J]. IEEE Transactions on Nuclear Science, 2005, 52 (6): 2125-2131.

共引文献4

同被引文献24

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部