期刊文献+

守恒型扩散方程非线性离散格式的性质分析和快速求解 被引量:1

PROPERTY ANALYSIS AND QUICK SOLUTIONS FOR NONLINEAR DISCRETE SCHEMES FOR CONSERVATIVE DIFFUSION EQUATION
原文传递
导出
摘要 对于守恒型扩散方程,研究其二阶时间精度非线性全隐有限差分离散格式的性质,证明了其解的存在唯一性.研究了二阶时间精度的Picard-Newton迭代格式,证明了迭代解对原问题真解的二阶时间和空间收敛性,以及对非线性离散解的二次收敛速度,实现了非线性问题的快速求解.本文中方法也适用于一阶时间精度格式的分析,并可推广至对流扩散问题.数值实验验证了二阶时间精度Picard-Newton迭代格式的高精度和高效率. Property analysis is given for nonlinear fully implicit (FI) finite difference discrete scheme with second-order time evolution for conservative diffusion equation. It is proved there exists a unique solution for the nonlinear FI scheme. A Picard-Newton iteration scheme with second-order time accuracy is studied. It is proved the solution of the iteration has second-order convergence both in spatial and temporal variants to the solution of the original problem, and it converges to the solution of the nonlinear discrete scheme with a quadratic speed. The quick solution of the nonlinear problem is realized. The methods here also adapt to analyze first-order time accurate scheme, and can be extended to convection-diffusion problem. Numerical tests verify the high accuracy and efficiency of the second-order temporal evolution Picard-Newton iteration.
作者 崔霞 岳晶岩
出处 《计算数学》 CSCD 北大核心 2015年第3期227-246,共20页 Mathematica Numerica Sinica
基金 国家自然科学基金(11171036 11271054 11301033) 中国工程物理研究院科学技术发展基金(2012B0202026 2014A0202010) 计算物理实验室基金
关键词 守恒型扩散方程 非线性全隐离散格式 二阶时间精度 存在唯一性 迭代加速 Conservative diffusion problem nonlinear fully implicit discrete scheme second-order temporal accuracy unique existence iteration acceleration
  • 相关文献

参考文献13

  • 1Guang-wei Yuan Xu-deng Hang.ACCELERATION METHODS OF NONLINEAR ITERATION FOR NONLINEAR PARABOLIC EQUATIONS[J].Journal of Computational Mathematics,2006,24(3):412-424. 被引量:4
  • 2袁光伟,杭旭登,盛志强,岳晶岩.辐射扩散计算方法若干研究进展[J].计算物理,2009,26(4):475-500. 被引量:23
  • 3Jingyan Yue,Guangwei Yuan.Picard-Newton Iterative Method with Time Step Control for Multimaterial Non-Equilibrium Radiation Diffusion Problem[J].Communications in Computational Physics,2011,10(9):844-866. 被引量:2
  • 4Rauenzahn R M, Mousseau V A, Knoll D A. Temporal accuracy of the nonequilibrium radiation diffusion equations employing a Saha ionization model[J]. Computer Physics Communications, 2005, 172: 109-118.
  • 5Olson G L. Efficient solution of multi-dimensional flux-limited nonequilibrium radiation diffusion coupled to material conduction with second-order time discretization[J]. Journal of Computational Physics, 2007, 226: 1181-1195.
  • 6Zhou Y L. Applications of Discrete Functional Analysis to the Finite Difference Method[M], Beijing: International Academic Publishers. 1990.
  • 7Cui X, Yue J Y. A nonlinear iteration method for solving a two-dimensional nonlinear coupled system of parabolic and hyperbolic equations[J]. Journal of Computational and Applied Mathe- matics, 2010, 234(2): 343-364.
  • 8Cui X, Yue J Y, Yuan G W. Nonlinear scheme with high accuracy for nonlinear coupled parabolic- hyperbolic system[J]. Journal of Computational and Applied Mathematics, 2011, 235(12): 3527- 3540.
  • 9Cui X, Yuan G W, Yue J Y. Numerical analysis and iteration acceleration of a fully implicit scheme for nonlinear diffusion problem with second-order time evolution[J]. Numerical Methods for Partial Differential Equations. doi: 10.1002/num.21988.
  • 10Y.L. Zhou(Laboratory of Computational Physics, Centre for Nonlinear Studies, Institute of AppliedPhysics and Computational Mathematics, Beijing, China).DIFFERENCE SCHEMES WITH NONUNIFORM MESHES FOR NONLINEAR PARABOLIC SYSTEM[J].Journal of Computational Mathematics,1996,14(4):319-335. 被引量:12

二级参考文献14

共引文献36

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部