摘要
对于守恒型扩散方程,研究其二阶时间精度非线性全隐有限差分离散格式的性质,证明了其解的存在唯一性.研究了二阶时间精度的Picard-Newton迭代格式,证明了迭代解对原问题真解的二阶时间和空间收敛性,以及对非线性离散解的二次收敛速度,实现了非线性问题的快速求解.本文中方法也适用于一阶时间精度格式的分析,并可推广至对流扩散问题.数值实验验证了二阶时间精度Picard-Newton迭代格式的高精度和高效率.
Property analysis is given for nonlinear fully implicit (FI) finite difference discrete scheme with second-order time evolution for conservative diffusion equation. It is proved there exists a unique solution for the nonlinear FI scheme. A Picard-Newton iteration scheme with second-order time accuracy is studied. It is proved the solution of the iteration has second-order convergence both in spatial and temporal variants to the solution of the original problem, and it converges to the solution of the nonlinear discrete scheme with a quadratic speed. The quick solution of the nonlinear problem is realized. The methods here also adapt to analyze first-order time accurate scheme, and can be extended to convection-diffusion problem. Numerical tests verify the high accuracy and efficiency of the second-order temporal evolution Picard-Newton iteration.
出处
《计算数学》
CSCD
北大核心
2015年第3期227-246,共20页
Mathematica Numerica Sinica
基金
国家自然科学基金(11171036
11271054
11301033)
中国工程物理研究院科学技术发展基金(2012B0202026
2014A0202010)
计算物理实验室基金
关键词
守恒型扩散方程
非线性全隐离散格式
二阶时间精度
存在唯一性
迭代加速
Conservative diffusion problem
nonlinear fully implicit discrete scheme
second-order temporal accuracy
unique existence
iteration acceleration