期刊文献+

MFCAV近似Riemann解法器在相容拉氏方法中的熵条件分析 被引量:1

ENTROPY ANALYSIS OF MFCAV RIEMANN SOLVER FOR A COMPATIBLE LAGRANGIAN METHOD
原文传递
导出
摘要 对基于MFCAV(Multi Fluid Channel on Averaged Volume)近似Riemann解法器的相容拉氏方法的熵条件进行了分析.结果表明与满足声学形式Riemann解法器的熵不同,前者只能在每个网格边界左、右两侧网格的熵随时间变化的和保证大于零,即能保证整体熵增,但不保证传统意义上的在每个网格中的熵增;而后者不仅保证整体熵增,而且还满足传统意义上的熵增.因此MFCAV的熵增相对声学形式解法器而言要弱一些,由此表明其熵增可能要小些,使得格式的耗散可能要小些.数值算例也验证了分析的正确性. An entropy analysis of MFCAV(Multi Fluid Channel on Averaged Volume) Riemann solver for a compatible Lagrangian method is shown. The analysis indicates that the entropy of MFCAV Riemann solver is different from that of the acoustics Riemann solver. The entropy of the former does not increase in every cell but only increases on every cell edge, so that the global entropy increases; but the entropy of the latter not only increases in every cell but also increase on every cell edge, then the global entropy increase still maintain. So that the entropy increase of MFCAV may be less than that of acoustic Riemann solver in weak sense, and this indicates that MFCAV may produce less dissipation than the acoustic solver. The numerical examples show the validitv of the analysis.
出处 《计算数学》 CSCD 北大核心 2015年第3期286-298,共13页 Mathematica Numerica Sinica
基金 国家自然科学基金(11171037,11472059,11301328) 中国工程物理研究院联合基金(11176015) 中国工程物理研究院科学技术发展基金(2012A0202010) 上海市重点科学建设项目(J50101)
关键词 熵条件 MFCAV近似Riemann解法器 相容拉氏方法 entropy analysis MFCAV Riemann solver compatible Lagrangian method
  • 相关文献

参考文献10

  • 1Loubere R and Shashkov M J. A subcell remapping method on staggered polygonal grids for arbitrary Lagrangian-eulerian method[J]. J. Comput. Phys., 2004, 23: 155-160.
  • 2Duckowicz J K, Bertrand J A Meltz. Vorticity errors in multidimensional Lagrangian codes[J]. Comput.Phys., 1992, 99: 115-134.
  • 3Addession F Let, al. CAVEAT: A computer code for fluid dynamics problem with large distortion and internal slip, Los Alamos report LA-10613-MS, 1992.
  • 4田保林,申卫东,刘妍,程军波,王双虎.ALE框架下几种不同Godunov型格式的数值比较[J].计算物理,2007,24(5):537-542. 被引量:5
  • 5Baolin Tian, Weidong Shen, Song Jiang, Shuanghu Wang and Yanliu. An arbitrary Lagrangian- Eulerian method based on the apaptive Riemann solver for general equations of state[J]. Int. J. Numer. Meth. Fluids, 2009, 59: 1217-1240.
  • 6Maire P H, Abgrall R, Breil J, et al. A cell-centered lagrangian scheme for multidimensional compressible flow problems[J]. SIAM J. Sci. Comput., 2007, 29(4): 1781-1824.
  • 7Maire P H. A high order cell-centered lagrangian scheme for two dimensional compressible fluid flows on unstructured meshes[J]. J. Comput. Phys., 2009, 228: 2391-2425.
  • 8刘妍,田保林,申卫东,茅德康.MFCAV近似Riemann解在新型拉氏方法中的应用[J].力学学报,2012,44(2):259-268. 被引量:3
  • 9Waltz Jet al. Verification of a three-dimensional unstructured finite element method usinganalytic and manufactured solutions[J]. Comput. Fluids, 2013, 81: 57-67.
  • 10Noh W F. Errors for calculations of strong shocks using artiflcal viscosity and artifical heat flux[J]. J. Comput. Phys., 1987, 72: 78-120.

二级参考文献11

  • 1沈智军,沈隆钧,吕桂霞,陈文,袁光伟.基于Riemann解的二维流体力学Lagrange有限点无网格方法[J].计算物理,2005,22(5):377-385. 被引量:5
  • 2Loubere R,Shashkov MJ.A subcell remapping method on staggered polygonal grids for arbitrary Lagrangian-eulerian method.J Comput Phys,2004,23:155-160.
  • 3Duckowicz JK,Meltz B.Vorticity errors in multidimensional Lagrangian codes.Comput Phys,1992,99:115-134.
  • 4Addession FL,Boumgardner JR,Dukowicz JK,et al. CAVEAT:A computer code for fluid dynamics problem with large distortion and internal slip,Los Alamos report LA-10613-MS,1992.
  • 5Tian BL,Shen WD,Jiang S,et al.An arbitrary Lagrangian-Eulerian method based on the apaptive Riemann solver for general equations of state.Int J Numer Meth Fluids,2009,59:1217-1240.
  • 6Maire PH,Abgrall R,Breil J,et al.A cell-centered lagrangian scheme for multidimensional compressible flow problems.SIAM J Sci Comput,2007,29(4):1781-1824.
  • 7Maire PH.A high order cell-centered lagrangian scheme for two dimensional compressible fluid flows on unstructured meshes.J Comput Phys,2009,228:2391-425.
  • 8Toro EF.Riemann Solvers and Numerical Methods for Fluid Dynamics.Heidelberg:Springer-verlag Berlin,2009.
  • 9Woodward P,Colella P.The numerical simulation of two-dimensional fluid flow with strong shocks.J Comput Phys, 1984,54:115 -173.
  • 10Noh WF.Errors for calculations of strong shocks using artifical viscosity and artifical heat flux.J Comput Phys, 1987,72:78-120.

共引文献6

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部