期刊文献+

基于GSA的复杂产品关键质量特性识别 被引量:5

Critical-to-quality characteristics identification for complex products using GSA
下载PDF
导出
摘要 为了识别复杂产品关键质量特性(critical-to-quality characteristics,CTQs),提出基于遗传模拟退火算法(genetic simulated annealing algorithm,GSA)的特征选择算法。所提算法将遗传算法(genetic algorithm,GA)与模拟退火算法(simulated annealing algorithm,SA)结合,兼有不错局部搜索与全局搜索能力。提出一种综合适应度函数应用于所提算法,以同时优化CTQ集分类性能和所选质量特性数。算例结果表明,所提算法能有效过滤无关、冗余质量特性,识别关键质量特性;与Memetic算法和信息增益(information gain,IG)算法相比,所提算法在识别更少关键质量特性的同时,得到更高预测精度。 To identify critical-to-quality characteristics (CTQs) for complex products, a genetic simulated annealing algorithm(GSA)based feature selection algorithm is proposed. As the proposed algorithm combines the genetic algorithm (GA) and simulated annealing algorithm (SA), it has both good local search ability and good global search ability. Additionally, the proposed algorithm adopts an aggregated fitness function, which can optimize the classification performance on CTQ set and the number of selected quality characteristics simul- taneously. Experimental results illustrate that the proposed algorithm can efficiently eliminate irrelevant and re- dundant quality characteristics and identify CTQs, as it can identify fewer CTQs with even higher predictive accuracy compared with the Memetic algorithm and the information gain (IG) algorithm.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第9期2073-2079,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(71102140) 国家杰出青年科学基金(71225006)资助课题
关键词 关键质量特性 遗传算法 模拟退火算法 复杂产品 特征选择 critical-to-quality characteristics (CTQs) genetic algorithm (GA) simulated annealing algo- rithm (SA) complex products feature selection
  • 相关文献

参考文献21

  • 1李伯虎.复杂产品制造信息化的重要技术——复杂产品集成制造系统[J].中国制造业信息化(应用版),2006(7):18-23. 被引量:25
  • 2Thornton A C. A mathematical framework for the key charac- teristic process[J]. Research in Engineering Design, 1999, 11 (3) : 145 - 157.
  • 3Jia G Z, Bai M. An approach for manufacturing strategy devel- opment based on fuzzy-QFD[J]. Computers Industrial Engi neering) 2011, 60(3): 445-454.
  • 4Lee D J, Thornton A C. The identification and use of key char acteristics in the product development process[C]//Proc, of the ASME Design Engineering Technical Conferences and Comput- ers in Enineerin Conference, 1996: 211- 217.
  • 5闫伟,何桢,田文萌,何曙光.基于IG的复杂产品关键质量特性识别[J].工业工程与管理,2012,17(1):70-74. 被引量:9
  • 6Hua J, Tembe W D, Dougherty E R. Performance of feature-se- lection methods in the classification of high-dimension data[J]. Pattern Recognition, 2009, 42(3): 409- 424.
  • 7姚旭,王晓丹,张玉玺,权文.基于Markov blanket和互信息的集成特征选择算法[J].系统工程与电子技术,2012,34(5):1046-1050. 被引量:7
  • 8闫伟,何桢,李岸达.基于CEM-IG算法的复杂产品关键质量特性识别[J].系统工程理论与实践,2014,34(5):1230-1236. 被引量:13
  • 9Kohavi R, John G H. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997, 97(1) : 273 - 324.
  • 10Pudil P, Novovi6ovd J, kittler J. Floating search methods in feature selection[J]. Pattern Recognition Letters, 1994, 15 (11) : 1119 - 1125.

二级参考文献69

共引文献83

同被引文献39

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部