期刊文献+

基于自适应混合能量参数的变步长LMS水声信道均衡算法 被引量:6

Variable step size LMS equalization algorithm based on adaptive mixed-power parameter in underwater acoustic channels
下载PDF
导出
摘要 提出了一种新的变步长算法,并将该算法用于水声信道均衡。该算法克服改进归一化最小均方(developed normanized least mean square,XENLMS)算法依赖固定能量参数λ的局限性,遵循变步长算法的步长调整原则在XENLMS算法的基础上引入一个自适应混合能量参数λk,改善算法收敛速度和鲁棒性。首先通过仿真分析变步长算法中的3个固定参数α,β,μ的取值范围及对算法收敛性能的影响;并在两种典型的水声信道环境下,采用两种调制信号对算法的收敛性能进行计算机仿真,结果显示,新算法的收敛速度明显快于XENLMS算法和已有的变步长算法,收敛性能接近递归最小二乘(recursive least square,RLS)算法的最优性能,但计算复杂度远小于RLS算法。最后,木兰湖试验验证了带判决反馈均衡器(decision feedback equalization,DFE)结构的新算法具有较好的克服多径效应和多普勒频移补偿的能力,相比LMS-DFE提高了一个数量级。 An improved novel variable step size least mean square (VSS-XENLMS) adaptive filtering algorithm is proposed and it is applied to underwater acoustic equalization. A variable mixed-power parameter λk is introduced whose the time variation allows the algorithm to follow fast changes in the channel. The proposed al- gorithm overcomes the dependency on the selection of the mixing parameter λ, which has been by developed nor- manized least mean square (XENLMS) algorithm. The selecting about three factors α,β and μ and their influences to convergence ability are analysed. Computer simulations of the proposed algorithm about convergence a- bility are carried out respectively under two underwater acoustic channels, using two modulation signals. Simu- lation results demonstrate that the convergence speed of the proposed algorithm compared with that of XENLMS algorithm and the former variable step-size algorithms has been visibly increased, the convergence performance of the proposed algorithm is compared to that of recursive least square (RLS), but its computation complexity is far less RLS. Then, Mulan Lake experiment shows that the performance of the decision feedback equalization (DFE)-based the proposed algorithm (VSS-XENLMS-DFE) is better than that of the LMS-DFE algorithm in terms of bit error rate for an order of magnitude, which overcomes the effects of multipath and Doppler shift very well.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第9期2141-2147,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61101205) 海军工程大学自然科学基金资助项目(HGDQNJJ3024)资助课题
关键词 最小均方算法 变步长 收敛速度 稳态误差 信道均衡 水声通信 least mean square (LMS) algorithm variable step size convergence speed steady-state error channel equalization underwater acoustic communication
  • 相关文献

参考文献17

  • 1Kilfoyle D B, Baggeroer A B. The state of the art in underwater acoustic telemeiry[J]. IEEE Journal of Oceanic Engineering, 2000,25(1) :el - 27.
  • 2Istepanion R S H, Stojanovic M. Under-water acoustic digital signal proce.ssing and communication systems[M]. London:Klu- wer Academic publishers, 2002 : 4 - 16.
  • 3Goalic A. Toward a digital acoustic underwater phone [C]//Proc. of the Marine Technology Society/IEEE Oceans Confe- rence, 1994 :,189 - 494.
  • 4Abdaoui A, Laot C. Blind DFE based on NLMS algorithm with generalized normalized gradient descent regularization [ C]// Proc. of th e ('ea ns, Marine Teeh nology Society / IEEE Biloxi- Marine Technology .['or Our Future : Global and Local Challen- ges,2009:123 - 127.
  • 5赵亮,朱维庆,朱敏.一种用于水声相干通信系统的自适应均衡算法[J].电子与信息学报,2008,30(3):648-651. 被引量:9
  • 6Geller B, Capellano V, Jourdain G. Equalizer for real time high rate transmission in underwater communications[C] ff Proc. of the International Conference on Acoustics, Speech, and SignalProcessing, 1995 : 3179 - 3182.
  • 7宁小玲,刘忠,罗亚松,孙臣良.水声信道快速收敛自适应均衡算法[J].系统工程与电子技术,2010,32(12):2524-2527. 被引量:10
  • 8Pelekanakis K, Chitre M. Comparison of sparse adaptive filters for underwater acoustic channel equalization/estimation[C]// Proc. of the IEEE International Conference o1 Communication Systems, 2010 : 395 - 399.
  • 9] Gupta A, Joshi S. Variable step size LMS algorithm for fractal signals[J]. IEEE Trans. on Signal Processing, 2008, 56 (4) 1411 - 1420.
  • 10Zhao S, Man Z, Khoo S, et al. Variable step-size LMS algorithm with a quotient form[J]. Signal Processing, 2009, 89 (1) :67 -76.

二级参考文献54

共引文献638

同被引文献36

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部