期刊文献+

基于Mahout的新用户推荐算法的设计与实现 被引量:3

Design and implementation of a new user recommendation algorithm based on Mahout
下载PDF
导出
摘要 为了解决大数据背景下新用户因没有历史数据而导致推荐难和推荐效率低等问题,提出将基于Mahout的协同过滤算法与基于MapReduce的Top N算法相结合的技术方法,来实现新用户推荐算法,从而构建新用户推荐系统的架构,并对Hadoop Top N算法以及Mahout中协同过滤算法进行设计与实现。理论分析和实验验证表明,该新用户推荐算法在推荐效率、对大规模数据处理的伸缩性以及推荐质量上都明显优于单独使用协同过滤算法的新用户推荐。 Recommendation for new users in big data era is difficult and the efficiency is very low due to the lack of historical data. In order to solve these problems, we propose a new user recommendation algorithm, which combines the collaborative filtering algorithm based on the Mahout and the Top N algorithm based on the MapReduce. We build a new user recommendation system architecture, design and implement the Hadoop Top N algorithm and the collaborative filtering algorithm in the Mahout. Theoretical analysis and experimental results show that the proposed recommendation algorithm for big data processing has better recommended efficiency, scalability and quality than the collaborative filtering algorithm.
出处 《计算机工程与科学》 CSCD 北大核心 2015年第8期1444-1449,共6页 Computer Engineering & Science
关键词 新用户推荐 Mahout 推荐系统 HADOOP 大数据 new user recommendation Mahout recommendation system Hadoop big data
  • 相关文献

参考文献8

二级参考文献150

  • 1张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 2李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 3Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 4Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 5Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 6Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 7Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 8Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 9Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 10Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.

共引文献1137

同被引文献26

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部