期刊文献+

基于满二叉树的二分K-means聚类并行推荐算法 被引量:9

A bisecting K-means clustering parallel recommendation algorithm based on full binary tree
下载PDF
导出
摘要 在推荐系统中应用K-means算法聚类可有效降维,然而聚类效果往往依赖于选定的初始中心,并且一旦选定目标簇后,推荐过程只针对目标簇进行,与其他簇无关。针对上述两个问题,提出一种基于满二叉树的二分K-means聚类并行推荐算法。该算法首先反复迭代二分K-means算法,迭代过程中使用簇内凝聚度作为分裂阈值,形成一颗满二叉树;然后通过层次遍历将用户归入到K个叶子节点(簇);最后针对K个簇,应用MapReduce框架进行并行推荐预测。MovieLens上的实验结果表明,该算法可大幅度提高推荐系统准确性,同时增强系统可扩展性。 K-means clustering algorithms can effectively reduce dimensions when they are applied to recommendation systems. However, the clustering effect is often dependent on the initial centers. And once the target cluster is selected, the recommendation process is executed only according to the target cluster and has nothing to do with other clusters. To solve these problems, we present a bisecting K- means clustering parallel recommendation algorithm based on full binary tree. Firstly, the bisecting Kmeans clustering algorithm is iterated, and during the iterative process the cluster cohesion level serves as the split threshold to form a full binary tree. Then the active users are classified into k leaf nodes (clusters) using the method of level traversal. Lastly, via the MapReduce framework, the process of recommendation prediction can be parallelized onto the k clusters. Experimental results on the MovieLens show that the proposed algorithm can not only greatly improve the accuracy of the recommendation results hut also enhance the system scalability.
出处 《计算机工程与科学》 CSCD 北大核心 2015年第8期1450-1457,共8页 Computer Engineering & Science
基金 广东省教育部产学研结合项目(2012B091100003 2012B091000058) 广东省专业镇中小微企业服务平台建设项目(2012B040500034)
关键词 满二叉树 K—means 聚类 推荐算法 MAPREDUCE full binary tree K-means clustering recommendation algorithm MapReduce
  • 相关文献

参考文献5

二级参考文献38

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2周涓,熊忠阳,张玉芳,任芳.基于最大最小距离法的多中心聚类算法[J].计算机应用,2006,26(6):1425-1427. 被引量:72
  • 3王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐[J].计算机应用,2007,27(5):1225-1227. 被引量:43
  • 4Schafer J B, Konstan J, Riedl J.Recommender Systems in Ecommerce [C].Proceedings of the ACM Conference on Electronic Commerce, 1999
  • 5Sarwar B, Karypis G, Konstan J.et al.Analysis of Recommendation Algorithms for E-commerce [C].Proceeding of the ACM Conference on Electronic Commerce, 2000
  • 6Ramos ,V., Ahneida ,F. Artificial Ant colonies in Digital Image Habitats -A Mass Behavior Effect Study on Pattern Recognition[C]. In Workshop on Ant Algorithms (From Ant Colonies to Artificial Ants) .2000,113-116
  • 7Ramos V .,Pina ,P.D Muge ,F. Self-Organized data and image retrieval as a consequence of Inter-Dynamic Synergistic Relationships in Artificial Ant Colonies. 2002,253-262.
  • 8Lumer E.D.&Faieta B.(1994),Diversity and Adaptation in Populations of Clustering ants.ln Cliff , D .,Husbands, P., Meyer , J. and Wilson S. (Eds.),in From Animals to Animates 3 ,Proc. of the 3rd Int. Conf. on the Simulation of Adaptive Behavior. Cambridge, MA: The MIT Press/Bradford Books,1994.
  • 9BREESE J S, HECHERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering [ C]//Proc of the 14th Conference Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, 1998:43-52.
  • 10XUE G, LIN C, YANG Q, et al. Scalable collaborative filtering using cluster-based smoothing[ C ]//Proc of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Brizil: ACM Press,2005 : 114-121.

共引文献61

同被引文献95

引证文献9

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部