期刊文献+

SCLD板模态控制模型及振动控制 被引量:3

Modal Control Model and Vibration Control of SCLD Plate
下载PDF
导出
摘要 为有效抑制薄板在外界激励下的低频振动,对机敏约束层阻尼(SCLD)结构进行了主动振动控制研究.首先,考虑了黏弹性材料随温度与频率变化的阻尼特性,结合GHM阻尼模型建立了耦合系统有限元动力学分析模型;其次,考虑到结构动力学模型自由度庞大,采用物理坐标下自由度动力缩聚和状态方程下复模态截断进行了两次降阶,并通过复模态空间向实模态空间转换,得到了低维实模态控制模型;最后,通过模态实验验证了理论模型,并基于低阶控制模型设计了振动控制器,证明了研究方法的正确性.研究结果表明,采用本文的组合降阶方法可以有效地对SCLD结构进行降阶,对模态控制模型主动控制取得了良好控制效果:在单位阶跃激励下,振动响应衰减时间从0.20 s缩短为0.08 s;在随机白噪声激励作用下,振动响应均方根值降低了39.65%. To effectively suppress the low frequency vibration of thin plate, the active vibration control of smart constrained layer damping (SCLD) structure was studied. Firstly, the damping characteristics of viscoelastic material varying with temperature and frequency were considered, and coupling finite element model for dynamics analysis was established based on GHM damping model. To address the large numbers of degrees of freedom of dynamics analysis model, model reduction was conducted through dynamic condensation in physical coordinate and complex modal truncation in state equation, and low-dimensional real modal control model was obtained from the conversion of complex modal space to the real modal space. Finally, the theoretical model was verified by modal experiment, and vibration controller was designed based on low-dimensional control model to validate the proposed method. The results show that the proposed combination reduction method is effective for SCLD structure. For the modal control model, the vibration control effect is desirable: the decay time of vibration response is shortened from 0.20 s to 0. 08 s under unit step excitation, and the root mean square values of vibration response decreases 39.65% under gauss white noise excitation.
出处 《西南交通大学学报》 EI CSCD 北大核心 2015年第4期717-724,共8页 Journal of Southwest Jiaotong University
基金 国家863计划资助项目(2012AA111803) 中央高校基本科研业务费专项资金资助项目(CDJZR12110006)
关键词 机敏约束层阻尼 组合降阶 GHM阻尼模型 模态控制模型 振动控制 smart constrained layer damping combination reduction GHM damping model modal control model vibration control
  • 相关文献

参考文献16

  • 1BALAMURUGAN V, NARAYANAN S. Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment[J]. Journal of Sound and Vibration, 2002, 249(2): 227-250.
  • 2SHI Yinming, HUA Hongxing, SOL H. The finite element analysis and experimental study of beams with active constrained layer damping treatments[J]. Journal of Sound and Vibration, 2004, 278(24): 343-363.
  • 3SHI Y M, LI Z F, HUA H X, et al. The modelling and vibration control of beams with active constrained layer damping[J]. Journal of Sound and Vibration, 2001, 245(5): 785-800.
  • 4曹友强,邓兆祥,鲜淼峰,王盛春.基于机敏约束阻尼技术的结构动态性能主动控制[J].汽车工程学报,2011,1(1):18-26. 被引量:5
  • 5曹友强,邓兆祥,王攀,刘会杰.机敏约束层阻尼减振板耦合系统有限元模型[J].重庆大学学报(自然科学版),2012,35(10):9-16. 被引量:6
  • 6LIU Tianxiong, HUA Hongxing, ZHANG Zhiyi. Robust control of plate vibration via active constrained layer damping[J]. Thin-Walled Structures, 2004, 42(3): 427-448.
  • 7MCTAVISH D J, HUGHES P C. Modeling of linear viscoelastic space structures[J]. Vibration and Acoustics, 1993, 115(1): 103-110.
  • 8GOLLA D F, HUGHES P C. Dynamics of viscoelastic structures a time-domain finite element formulation[J]. Applied Mechanics, 1985, 52(7): 897-907.
  • 9罗虹,李军,曹友强,周凯.有限元模型动力缩聚中主副自由度选取方法[J].机械设计,2010,27(12):11-14. 被引量:11
  • 10李德葆, 陆秋海. 实验模态分析与应用[M]. 北京:科学出版社,2001: 78-79.

二级参考文献63

  • 1Guyan R J.Reduction of stiffness and mass matrices[J].American Institute of Aeronautics and Astronautics Journal,1965,3(2):380.
  • 2Irons B M.Structural eigenvalue problems-elimination of unwanted variables[J].American Institute of Aeronautics and Astronautics Journal,1965,3(5):961-962.
  • 3O'Callahan J.A procedure for an improved reduced system (IRS) model[C]//Proceedings of 7th International Modal Analysis Conference,Las Vegas,1989:17-21.
  • 4陈前,应用力学学报,1987年,4卷,1页
  • 5陈前,1987年
  • 6张阿丹,航空学报,1984年,5卷,3页
  • 7Stanway R, Rongong J constrainecl !.ayer damping : A, Sims N D. Active a state-of-thwart review[J]// Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2003, 217(6): 437 456.
  • 8Park C H , Inman D J and Lan M J . Model reduction of viscoelastic finite element models[J].Journal of Sound and Vibration, 1999,219(4) :619-637.
  • 9Trindade M A, Benjeddou A, Ohayon R. Modding of frequency dependent viscoelastic materials for active passive vibration dampin[J]. Journal of Vibration and Acoustics, 2000,122(2) :169-174.
  • 10I.esieutre G A, Lee U. A finite element for beams having segmented active constrained layers with frequency" dependent viscoelastics[J].Smart Material Structures, 1996,5(5) :615 627.

共引文献45

同被引文献26

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部