期刊文献+

基于数据挖掘的空调机组故障预测研究 被引量:4

Study on Error Prediction in Air Conditioner Set Based on Data Mining
下载PDF
导出
摘要 作为机场桥载设备的重要组成部件之一——空调机组,由它产生的频发故障所造成的设备利用率低、修复率时长和重大经济损失等问题,在基于桥载设备的安监系统上,设计了空调机组安监信息采集节点,通过Clementine软件,建立了空调机组的故障预测模型,经过比较Apriori算法和其他典型数据挖掘算法的性能,通过在线数据库测试结果表明,得到了不同的典型算法在预测空调机组故障上显现的特点,通过选择最优算法高效地预测了空调机组的未来状态,实现了对空调机组的实时故障预测,进而为解决故障提供了方向和目标,最终达到了降低经济损失最大化的目的,具有很深的实际意义。 Air conditioner is one of the most important part of the bridge-born equipment on airport.By structuring the model of error prediction and the collecting node of safety monitoring information with the Clementine software,frequent errors appeared in air conditioner can be effectively avoided.The frequent errors would usually give rise to a series of problems,including low utilization rate,long repair rate time and severely economic losses and so on.By comparing performance of Apriori algorithm with other typical algorithms,on the basis of online database,the obvious characteristics emerged in predicting the future state of air conditioner are obtained.Moreover,the future state of air conditioner is effectively predicted by selecting the optimal algorithm to achieve the real-time failure prediction.Furthermore,the model can provide failure solution with direction and goal.Finally,the purpose that economic loss can be reduced to maximization is gotten,which will have considerably practical significance.
出处 《测控技术》 CSCD 2015年第8期37-40,44,共5页 Measurement & Control Technology
基金 中央高校基本科研业务中国民航大学专项(3122013C015) 中央高校基本科研业务民航节能减排专项(ZXH2012G005)
关键词 桥载设备 安监系统 频繁项集 支持度 置信度 bridge-born equipment safety monitoring system frequent itemsets support confidence
  • 相关文献

参考文献12

  • 1Fu T C. A review on time series data mining[ J]. Engineering Applications of Artificial Intelligence ,2011,24( 1 ).
  • 2Su S L,Zhi J J, Lou L P, et al. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multi variate statistical techniques[ J]. Physics and Chemistry of the Earth,parts A/ B/C ,2011,36(9/10/11 ) :379 - 386.
  • 3薛薇,陈欢歌编著.基于Clementine的数据挖掘[M].北京:中国人民大学出版社,2012.
  • 4Meliker J R, Sloan C D. Spatio-temporal epidemiology : prin- ciple sand opportunities[ J]. Spatial and Spatio-temporal Ep- idemiology ,2011,2 ( 1 ) : 1 - 9.
  • 5Wang J D, Zhao Y H, Wu X Q, etal. A transductive multi- lablel learning approach for video concept Detection [ J ]. Pat- tern Recongnition ,2011,44 ( 10/11 ) : 2274 - 2286.
  • 6牛罡,罗爱宝,商琳.半监督文本分类综述[J].计算机科学与探索,2011,5(4):313-323. 被引量:10
  • 7Tahir M A, Kittler J, Ahamed, etal. Multilabel classification using heter ogeneous ensemble of multi-label [ J ]. Pattern Recognition Letters, 2012,33 ( 5 ) :513 - 523.
  • 8Stein S, Payne T R, Jennings N R. Robust execution of serv- ice workflows using redundancy and advance reservations [J]. IEEE Transactions on Services Computing,2011,4(2).
  • 9Isalm M Z, Brankovic L. Privacy preserving data mining:a noise addition framework using a novel clustering technique [ J ]. Knowledge-Based System,2011,24 ( 8 ) : 1214 - 1223.
  • 10Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption from(standard) LWE[ C]//2011 IEEE 52^nd Annual Symposium on Foundations of Computer Science (FOCS) ,2011:97 - 106.

二级参考文献40

  • 1Day N E. Estimating the components of a mixture of normal distributions[J]. Biometrika, 1969, 56(3):463-474.
  • 2Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B, 1977, 39(1): 1-38.
  • 3Miller D J, Uyar H. A generalized Gaussian mixture classifier with learning based on both labelled and unlabelled data[C]//Advances in Neural Information Processing Systems 9: Proceedings of the 1996 Conference. Cambridge, MA, USA: MIT Press, 1996: 783-787.
  • 4Nigam K, McCallum A, Thrun S, et al. Learning to classify text from labeled and unlabeled documents[C]// Proceedings of the 15th National/10th Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence. Menlo Park, CA, USA: AAAI Press, 1998: 792-799.
  • 5Baluja S. Probabilistic modeling for face orientation discrimination: learning from labeled and unlabeled examples[C]//Advances in Neural Information Processing Systems 11: Proceedings of the 1998 Conference. Cambridge, MA, USA: MIT Press, 1998: 854-860.
  • 6Joachims T. Transductive inference for text classificationusing support vector machines[C]//Proceedings of the 16th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann, 1999: 200-209.
  • 7Blum A, Chawla S. Learning from labeled and unlabeled data using graph mincuts[C]//Proceedings of the 18th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann, 2001: 19-26.
  • 8Szummer M, Jaakkola T. Partially labeled classification with Markov random walks[C]//Advances in Neural Information Processing Systems 14: Proceedings of the 2001 Conference. Cambridge, MA, USA: MIT Press, 2001: 945-952.
  • 9Chapelle O, Weston J, Schoelkopf B. Cluster kernels for semi-supervised learning[C]//Advances in Neural Information Processing Systems 15: Proceedings of the 2002 Conference. Cambridge, MA, USA: MIT Press, 2002: 585-592.
  • 10Zhou D, Bousquet O, Lal T, et al. Learning with local and global consistency[C]//Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference. Cambridge, MA, USA: MIT Press, 2003: 321-328.

共引文献38

同被引文献64

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部