期刊文献+

碳纤维增强复合材料在轨道车辆中的应用 被引量:36

Application of carbon fiber-reinforced polymer in rail vehicle
下载PDF
导出
摘要 轻量化是减少列车运行能耗的一个关键指标,碳纤维增强复合材料(CFRP)是车体轻量设计的优选材料。文章阐述了目前车体轻量化的主要实现途径,轻量化对节能的意义,及国内外CFRP在轨道交通领域的应用情况。CFRP正从非承载结构零件向承载构件、从零部件向大型结构件延伸扩展;其用量正在逐渐提高。但CFRP要想广泛应用于轨道交通,必须在成本上有更大的改进空间,提高设计研发人员复合材料构件的设计和制造经验,从维护到运营成本的整个系统范围内的利益进行评估和平衡。 Lightweight is a key index to reduce the energy consumption of train operation, carbon fiberreinforced polymer (CFRP) is the preferred material for lightweight vehicle design. The paper describes the current main ways for lightweight of car body, significance of lightweight for energy saving, and the application status of CFRP in the rail transportation field. The application of CFRP shows the following characteristics: from non- bearing structural parts extending to bearing structural parts; from components spreading to large-scale structures; the usages of CFRP are greatly increased. But,if the CFRP were widely applied in track traffic,there must be greater room for improvement in terms of costs, the design and manufacturing experiences of the staff engaged in composite structures research and development must be improved,the system-wide interests from maintenance to operational costs must be assessed and balanced.
作者 刘晓波 杨颖
出处 《电力机车与城轨车辆》 2015年第4期72-76,共5页 Electric Locomotives & Mass Transit Vehicles
关键词 轨道车辆 轻量化 节能 碳纤维增强复合材料 rail vehicle lightweight energy saving carbon fiber-reinforced polymer
  • 相关文献

参考文献19

  • 1刘晓波,杨颖.轻量化高性能碳纤维复合材料车体研发关键技术[J].合成纤维,2013,42(10):29-34. 被引量:32
  • 2Helms H, Lambrecht U. The potential contribution of light-weighting to reduce transport energy consumption [J]. International Journal of Life Cycle Assessment, 2007 ( 1 ) : 58-64.
  • 3Wennberg D. Light-weighting methodology in rail vehicle design through In troduction of Load Carrying Sandwich Panels [D]. Stockholm: KTH Royal Institute of Technology, 2011.
  • 4Andersson E, Berg M, FrOidh O, et al. Rail passenger transport, tech no-economic analysis of energy and green-house gas reductions [R]. TOSCA: Work Package, 2011.
  • 5Blanc I, Schwab P, Gomez M, et al. Towards the eco-design of a tilting train in korea: Applying life cycle assessment to design alternatives SMIA05-2nd International Congress with Innovation Fair, Sustainable management in action[C]. Geneva : [s.n.], 2005.
  • 6Kim J S, Lee S J, Shin K B. Manufacturing and structural safety evaluation of a composite train carbody[J]. Composite Structures, 2007,78 (4) :468- 476.
  • 7Kim J S, Jeong J C, Lee S J. Numerical and experimental studies on the deformational behavior a composite train carbody of the Korean tilting train[J]. Composite Structures, 2007,81 (2) : 168-175.
  • 8Seo S I, Park C S, Kim K et al. Fatigue strength evaluation of the aluminum carbody of urban transit unit by large scale dynamic load test[J]. JSME International Journal Series A, 2005,48 ( 1 ) : 27-34.
  • 9Kim J S, Jeong J C. Natural frequency evaluation of a composite train carbody with length of 23m [J]. Composite Science and Technology, 2006,66(13) : 2272-2283.
  • 10Kim J S, Jong J C, Cho S H, et al. Fire resistance evaluation of a train carbody made of composite material by large scale tests [J]. Composite Structures, 2008,83 (3) : 295-303.

二级参考文献21

  • 1Helms H, Lambrecht U. The potential contribution of light-weighting to reduce transport energy consumption [J]. International Journal of Life Cycle Assessment, 2007:58-64.
  • 2Kim J S,Lee S J, Shin K B. Manufacturing and structural safety evaluation of a composite train carbody [J]. Composite Structures, 2007, 78:468- 476.
  • 3Kim J S, Jeoug J C, Lee S J. Numerical and experimental studies on the deformational lrehavior a composite train car body of the Korean tilting train[J]. Composite Structures, 2007, 81: 168-175.
  • 4Seo S I, Park C S, Kim K, et al. Fatigue strength evaluation of the aluminum car body of urban transit unit by large scale dynamic load test [J]. JSME International Journal Series A, 2005, 48(1): 27-34.
  • 5Kim J S, Jeong J C. Natural frequency evaluation of a composite train car body with length of 23m[J]. Composite Seience and Technology, 2006, 66(13) :2 272-2 283.
  • 6Kim J S, Jong J C, Cho S H, et al. Fire resistance evaluation of a train carbody made of composite material by large scale tests [J]. Composite Structures, 2008, 83:295-303.
  • 7Seo S I, Kim J S, Cho S H. Development of a hybrid composite bodyshdl for tilting trains [J]. Proceedings ff the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222:1-13.
  • 8Jang H J, Shin K B, Sung Ho Han. A study on crashworthiness assessment and improvement of titlting train made of .sandwich compoistes [J]. Word Academy of Science, Engineering and Technology, 2012, 62: 217-221.
  • 9Belingardi G, Cavatorta M P, Duella R. Material charaeterization of a composite-foam sandwich for the front structure of a high speed train[J].Composite Structure, 2003, 61:13-25.
  • 10Wennberg D. A light weight car body for high-speed trains[M]. Skolan for teknikvetenskap, Kungliga Tekniska hfigkolan, 2009:3-5.

共引文献46

同被引文献216

引证文献36

二级引证文献250

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部