摘要
图G的点色数χ(G)是指图G存在正常k-顶点着色的k的最小值,图G的邻点可区别E-全色数χe at(G)是指图G存在邻点可区别E-全染色的k的最小值.尽管图G的这两种染色看似不同,但我们证明:当χ(G)≥4时,χ(G)=χe at(G).
The chromatic number of a graphG, denoted byx(G), is the minimum number k for which G has a proper k-vertex coloring. The adjacent vertex-distinguishing E-total chromatic number of G, denoted by χ(G), is the minimum number k for which G has an adjacent vertex-distinguishing E-total coloring. These two colorings seem to be different, but we proved that X(G) =Xat(G) when x(G) t〉4.
出处
《海南师范大学学报(自然科学版)》
CAS
2015年第2期131-133,共3页
Journal of Hainan Normal University(Natural Science)
基金
国家青年自然科学基金项目(11301440)
福建省教育厅自然科学基金项目(JA13240,JB13155)
厦门理工学院科技项目(xkjj 201106)
关键词
点色数
邻点可区别E-全色数
chromatic number
adjacent vertex-distinguishing E-total chromatic number