期刊文献+

求解BTTB系统的迭代算法

The Iterative Algorithm for Block-Toeplitz-Toeplitz-Block Systems
下载PDF
导出
摘要 BTTB矩阵在信号处理等工程问题中有着广泛的应用,因此,针对这种类型矩阵的特点,利用它们的结构来设计一些数值稳定的、收敛性能好的快速算法,具有极为重要的意义.文章讨论了块三角Toeplitz矩阵的一些性质,给出了求解块下三角Toeplitz矩阵逆的快速算法,并对其复杂性进行了分析.利用这种求逆算法进而给出了求解BTTB系统的块Gauss-Seidel迭代算法和块SOR迭代算法,并讨论了其收敛性.数值实验得到验证. BTYB matrices have a wide range of engineering applications such as in signal processing. In view of the charac- teristics of this type of matrix, it is very significant that we design some fast algorithms with numerical stability and the good property of convergence. Firstly, we discussed some properties of block triangular Toeplitz matrices, then we presented fast algorithms for computing the inverse of such a class of matrices and also analyzed the complexity of this algorithm. Using the inverse algorithm, we gave Block-Gauss-Seidel iteration algorithm and Block-SOR iteration algorithm for solving the BTTB system.
作者 曹蓉
出处 《海南师范大学学报(自然科学版)》 CAS 2015年第2期134-138,共5页 Journal of Hainan Normal University(Natural Science)
基金 汕头职业技术学院科研基金资助项目(SZK2014Y35)
关键词 BTTB 块Gauss-Seidel迭代 块SOR迭代 BTFB block Gauss-Seidel iteration block SOR iteration
  • 相关文献

参考文献15

二级参考文献21

  • 1R.H.Chan and M.K.Ng.Conjugate gradient methods for Toeplitz systems,SIAM Rev.,38:427-482,1996.
  • 2D.Commges,M.Monsion.Fast Inversion of Triangular Toeplitz Matrices.IEEE Transactions on automatic con-trol,1984,29(3)250-251.
  • 3A.Frommer,D.B.Szyld.H-Splittings and two-stage iterative methods.Numerische Mathematic,1992,63:345-356.
  • 4G.H.Golub,C.F.Van Loan.Matrix Computation.Third Edition,The Johns Hopkins University Press,1996.
  • 5Zhong-Yun Liu,He-Bing Wu,Lu Lin.The two-stage iterative methods for symmetric positive definite ma-trices.Applied Mathematics and Computation,114(2000)1-12.
  • 6M.K.Ng.Iterative Methods for Toeplitz Systems,Oxford University Press,Oxford,UK,2004.
  • 7游兆永,线性代数与多项式的快速算法,1983年
  • 8徐冲,张凯院,陆全.Toeplitz矩阵类的快速算法[M].西安:西北工业大学出版社,1990:10.
  • 9CHAN R I-I, NG M K. Conjugate gradient methods for To- eplitz systems [ J ]. SIAM Rev, 1996,38 ( 3 ) : 427 - 482.
  • 10LEVINSON N. The Wiener RMS (Root Mean Square) er- ror criterion in filter dsign and prediction [ J . J Math Phys, 1946,25:261 - 278.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部