摘要
介绍了一种摄像机自标定方法,该方法通过匹配的特征点建立标准矩阵后,利用反对称矩阵的性质,将标准矩阵表达式分解成6个约束方程,通过其约束关系得到摄像机内外参数。同时采用了RANSAC算法从检测到的特征点中排除奇异的特征点,对数据集进行筛选,以此提高匹配点的准确度和标定的精度。实验表明该方法能根据真实视频获得摄像机内外参数,能够较好的应用于机器视觉领域。
This paper describes a self-calibration method . After establishing fundamental matrix by using matched feature points , six constraints equations was founded from the fundamental matrix based on the character of the skew-symmetric matrix . . Then the intrinsic and ex-trinsic parameters can be determined through the relation of the set of constraints . Ransac method was adopted to exclude the singular points from detected feature points , therefore improve the accuracy of feature matching and camera calibration . Experimental results for real video showed that this method can effectively acquire the intrinsic and extrin-sic parameters , and it can be applied into computer vision field .
出处
《现代制造技术与装备》
2015年第4期92-94,共3页
Modern Manufacturing Technology and Equipment
关键词
摄像机自标定
基本矩阵
反对称矩阵
camera self-calibration,fundamental matrix,skew-symmetric matrix