期刊文献+

机器视觉技术中一种基于反对称矩阵及RANSAC算法的摄像机自标定方法

An Approach of Camera Self-Calibration Based on Skew-symmetric Matrix and RANSAC alogrithm
下载PDF
导出
摘要 介绍了一种摄像机自标定方法,该方法通过匹配的特征点建立标准矩阵后,利用反对称矩阵的性质,将标准矩阵表达式分解成6个约束方程,通过其约束关系得到摄像机内外参数。同时采用了RANSAC算法从检测到的特征点中排除奇异的特征点,对数据集进行筛选,以此提高匹配点的准确度和标定的精度。实验表明该方法能根据真实视频获得摄像机内外参数,能够较好的应用于机器视觉领域。 This paper describes a self-calibration method . After establishing fundamental matrix by using matched feature points , six constraints equations was founded from the fundamental matrix based on the character of the skew-symmetric matrix . . Then the intrinsic and ex-trinsic parameters can be determined through the relation of the set of constraints . Ransac method was adopted to exclude the singular points from detected feature points , therefore improve the accuracy of feature matching and camera calibration . Experimental results for real video showed that this method can effectively acquire the intrinsic and extrin-sic parameters , and it can be applied into computer vision field .
作者 王赟
出处 《现代制造技术与装备》 2015年第4期92-94,共3页 Modern Manufacturing Technology and Equipment
关键词 摄像机自标定 基本矩阵 反对称矩阵 camera self-calibration,fundamental matrix,skew-symmetric matrix
  • 相关文献

参考文献8

  • 1S. J. Maybank, O. Faugeras. A Theory of Self-calibration of aMoving Camera [J]. Internat. J. Comput Vision. 1992, 8(2):123-151.
  • 2Q. -T. Luong, O. Faugeras. Self-calibration of a moving camerafrom point correspondences and fundamental matrices [J]. Internat.J. Comput. Vision, 1997, 22(3): 261-289.
  • 3Xavier Armangue, Salvi J. Overall view regarding fundamentalmatrix estimation [J]. Image and Vision Computing, 2003, 21:205-220.
  • 4Z.Zhang, C.Loop. Estimating the Fundamental Matrix byTransforming Image Points in Projective Space [J]. ComputerVision and Image Understanding, 2001, 82: 174-180.
  • 5F.Dornaika, R.Chung. An Algebraic Approach to CameraSelf-Calibration [J]. Computer Vision and Image Understanding,2001, 83: 195-215.
  • 6Z.Y Zhang. Camera Calibration With One-Dimensional Objects[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004, 26(7):892-899.
  • 7Fischler, M.A. and Bolles, R.C. Random Sample Consensus: AParadigm for Model Fitting with Applications to Image Analysisand Automated Cartography. Communications of the ACM,24(6):381 395, 1981.
  • 8程焱,周焰,林洪涛,潘恒辉.基于SIFT特征遥感影像自动配准与拼接[J].遥感技术与应用,2008,23(6):721-728. 被引量:24

二级参考文献13

  • 1李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 2Jan Flusser B. Image Registration Methods:A Survey[J]. Image and Vision Computing, 2003,21:977-1000.
  • 3Bentoutou Y. An Automatic Image Registration for Applications in Remote Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(9),2127-2137.
  • 4Harris C, Stephens M. A Combined Corner and Edge Detector [C]. In Fourth Alvey Vision Conference. Manchester, UK, 1988,147-151.
  • 5Taejung Kim, Yong-Jo Im. Automatic Satellite Image Registration by Combination of Matching and Random Sample Consensus[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(5) : 1111-1117.
  • 6Lowe D G. Distinctive Image Features from Scale-invariant Feature Transform[J]. International Journal of Computer Vision,2004,60(2) :91-110.
  • 7Mikolajczyk K,Schmid C. A Performance Evaluation of Local Descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,87(10) :1615-1630.
  • 8Koenderink J J. The Structure of Images[J]. Biological Cybernetics, 1984,50: 363-396.
  • 9Fishehler M A, Bolles R C. Random Sample Consensus: A Paradigm for Model Fitting with Application to Image Analysis and Automated Cartography[J]. Communication Association Machine, 1981,24(6) :381-395.
  • 10Torr P H S,Murray D W. The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix [J]. International Journal of Computer Vision, 1997,24 (3) : 271-300.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部