期刊文献+

基于证据空间有效性指标的聚类选择性集成 被引量:5

Cluster ensemble selection based on validity index in evidence space
下载PDF
导出
摘要 首先针对距离空间在描述数据复杂结构信息方面的不足给出证据空间的概念。然后基于证据空间扩展有效性指标Davies-Bouldin,同时利用聚类成员的类别相关矩阵度量差异性。最后以较高有效性和较大差异性为目标选择聚类成员并用于集成。实验结果显示所提方法能够有效提高聚类集成算法的有效性。 A At first, the concept of evidence space was proposed to overcome the weakness of distance space for describ- ing the complex structure of data sets. And then, the Davies-Bouldin index was extended based on the evidence space proposed. Meanwhile the label-correlation matrix was used to measure the difference of clusters members. At last, the cluster members with better effectiveness and bigger differences were selected for cluster ensemble. The experimental results show that the proposed method is able to improve the effectiveness of cluster ensemble.
出处 《通信学报》 EI CSCD 北大核心 2015年第8期135-145,共11页 Journal on Communications
基金 国家自然科学基金资助项目(60975026 61273275)~~
关键词 Davies-Bouldin指标 证据空间 聚类选择性集成 互相关矩阵 Davies-Bouldin index evidence space cluster ensemble selection co-association matrix
  • 相关文献

参考文献16

  • 1ZHUANG W W, YE Y F, CHEN Y, et al. Ensemble clustering for internet security applications [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2012, 42(6): 1784-1796.
  • 2GLLAVATA J, QELI E, FREISLEBEN B. Detecting text in videos using fuzzy cinstering ensembles[A]. Proc of 8th IEEE International Symposium on Multimedia[C]. 2006,283-290.
  • 3卢志茂,李纯,张琦.近邻传播的文本聚类集成谱算法[J].哈尔滨工程大学学报,2012,33(7):899-905. 被引量:9
  • 4邓晓政,焦李成,卢山.基于非负矩阵分解的谱聚类集成SAR图像分割[J].电子学报,2011,39(12):2905-2909. 被引量:16
  • 5ALEXANDER S, JOYDEEP G Cluster ensembles-a knowledge reuse framework for combining partitionings[A]. AAAI[C]. 2002.93-98.
  • 6FRED A L N, JAIN A K. Combining multiple clusterings using evidence accumulation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835-850.
  • 7TOPCHY A, JAIN A K, WILLIAM E Clustering ensembles: models of consensus and weak partitions[J]. IEEE Transactions on Pattern Analysis and Machine InteUigence, 2005, 27(12): 1866-1881.
  • 8罗会兰,孔繁胜,李一啸.聚类集成中的差异性度量研究[J].计算机学报,2007,30(8):1315-1324. 被引量:36
  • 9HADJITODOROV S T, KUNCHEVA L I, TODOROVA L P. Mod- erate diversity for better cluster ensembles[J]. Information Fusion, 2006, 7: 264-275.
  • 10HONG Y, SAM K, WANG H L, et al. Resampling-based selective clustering ensembles [J]. Pattern Recognition Letters, 2009, 30: 298-305.

二级参考文献42

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2TIAN Zheng,LI XiaoBin,JU YanWei.Spectral clustering based on matrix perturbation theory[J].Science in China(Series F),2007,50(1):63-81. 被引量:19
  • 3Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images[ M]. Norwood: Artech House Inc, 1998.88 - 204.
  • 4Jain A K, Murty M N. Data clustering: A review[J].ACM Computing Surveys, 1993,31 (3) : 264 - 323.
  • 5Andrew Y Ng,Michael I Jordan, Yair Weiss. On spectral clus- tering: Analysis and an algorithm[A]. Proceedings of Confer- ence on Neural Information Processing Systems [ C ]. Vancou- ver, Canada: MIT, 2002.849 - 856.
  • 6Fowlkes C, Belongie S, Chung F. Spectxal grouping using the Nystrom method[J].IEEE Transaction on Pattem Analysis and Machine Intelligence, 2004,26 (2) : 214 - 225.
  • 7Lee D, Seung H. Learning the parts of objects by non-negative matrix factodzation[J ]. Nature, 1999,401 (6755) : 788 - 791.
  • 8T Li, C Ding, M I Jordan. Solving consensus and semi-super- vised clustering problems using non-negative maaix factoriza- tion[A]. Proceedings of International Conference on Data Min- ing[C]. Washington, DC, USA: IEEE, 2007.577 - 582.
  • 9Y Jiang, Z Zhou. SOM ensemble-based image segmentation [J] .Neural Processing Letters,2004,20(3) : 171 - 178.
  • 10X Zhang, L Jiao, F Liu. Spectral clustering ensemble applied to SAR image segmentation [ J ]. IEEE Transactions on Geo- sciences and Remote Sensing, 2008,46 (7) : 2126 - 2136.

共引文献116

同被引文献45

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部